Jason Moeller: June 29-30, 2011

NOAA TEACHER AT SEA
JASON MOELLER
ONBOARD OSCAR DYSON
JUNE 11-JUNE 30

NOAA Teacher at Sea: Jason Moeller
Ship: Oscar Dyson
Mission: Walleye Pollock Survey
Geographic Location: Kodiak Harbor
Date: June 29-30

Ship Data
Latitude: 57.78 N
Longitude: -152.42 W
Wind: 4.9 knots
Surface Water Temperature: 8.5 degrees C
Air Temperature: 9.1 degrees C
Relative Humidity: 69%
Depth: 18.99

Personal Log

For the last time, welcome aboard!

We are now back in Kodiak, and I fly out on Thursday, June 30th. We got in late on the 28th, and so that gave us some time to explore! Once again, it was back to the trail to try and look for some bears!

eagle

We had a nice start when this bald eagle flew right above our heads and landed on a light!

eagle2

Another photo of the eagle.

On June 29th, after stopping for some Mexican food, Paul, Jake, Jodi and I hopped in a car and drove out to Anton Larsen Bay in hopes of some great photo opportunities and wildlife. Below are some of the best photographs that I took of the trip.

The first place we stopped the car had this beautiful view of rolling hills and mountains in the background.

The first place we stopped the car had this beautiful view of rolling hills and mountains in the background.

road

The road we took to get here. In the middle of the image is a lake, and if you look hard enough we could see all the way to the ocean.

yoga

Jodi has fun demonstrating a yoga pose!

bay

Our next stop was to explore the actual bay. This mountain overlooked the spot where the water ended and land began.

boat

An empty boat was randomly just drifting in the bay. It made for a nice photo though.

After looking at the bay, we began to explore a trail that led into the woods. There was supposed to be a waterfall at the end of the trail, but the trail just ended with no falls in sight. Oh well! This stream ran alongside of the trail the entire way.

After looking at the bay, we began to explore a trail that led into the woods. There was supposed to be a waterfall at the end of the trail, but the trail just ended with no falls in sight. Oh well! This stream ran alongside of the trail the entire way.

stream 2

Another photo of the stream.

sun

It was nice and sunny yesterday, making it the first time I had seen sun in Kodiak! It made for some picturesque moments while walking through the woods.

fox

In the end, once again, I didn't see a bear. However, as we were driving back, we did see this fox catch a mouse!

Science and Technology Log

As the survey is now over, there is no science and technology log.

Species Seen

Gulls
Arctic Tern
Bald Eagle
Red Fox
Mouse

Reader Question(s) of the Day!

There are no questions of the day for this last log. However, I would like to extend some thank yous!

First, I would like to thank the NOAA organization for allowing me the wonderful opportunity to travel aboard the Oscar Dyson for the past three weeks. I learned an incredible amount, and will be able to bring that back to my students. I had a great time!

Second, I would like to thank the crew of the ship for letting me come onboard and participate in the survey. Thanks for answering all of my questions, no matter how naive and silly, teaching me about how research aboard this vessel really works, editing these blogs, and for giving me the experience of a lifetime.

Third, I would like to thank Tammy, the other NOAA Teacher at Sea, for all of the help and effort that she put into working with me on the science and technology section of the blog. Tammy, I could not have done it without you!

Next, a huge thank you to the staff of Knoxville Zoo for their support of the trip and granting me the time off! A special thanks especially needs to go to Tina Rolen, who helped edit the blogs and worked with the media while I was at sea. She helped keep me from making a complete fool of myself to the press. Another special thanks goes out to Dr. John, who loaned me the computer that I used to post the first several logs.

Thanks also go out to Olivia, my wonderful and beautiful wife, for supplying the camera that I used for the first half of the trip.

Finally, I would like to thank everyone who read the log and sent comments! I received many positive comments on the photography in this blog, although I must confess that I laughed a bit at those. Paul, our chief scientist, is the expert photographer on board, and his photos expose me for the amateur that I actually am. I would like to end this blog by posting some of the incredible images he gave me at the end of the trip.

cliffs

Cliffs rise sharply out of the ocean in the Gulf of Alaska

waterfall

A waterfall plummets into the Gulf of Alaska

clouds

Clouds cover the top of an island.

cliffs

Fog rolls down the cliffs toward the ocean.

Twin Pillars

The Twin Pillars

Cliffs

A closeup of the cliffs that make up the Alaskan shoreline.

fog

Since we saw so much of it, it seems appropriate to end this blog with a photo of fog over the Gulf of Alaska. Bye everyone, and thanks again!

Jason Moeller: June 28, 2011

NOAA TEACHER AT SEA
JASON MOELLER
ONBOARD NOAA SHIP OSCAR DYSON
JUNE 11 – JUNE 30, 2011

NOAA Teacher at Sea: Jason Moeller
Ship: Oscar Dyson
Mission: Walleye Pollock Survey
Geographic Location: Whale Pass
Date: June 28-29, 2011

Ship Data
Latitude: 58.01 N
Longitude: -152.50 W
Wind: 23.95 knots
Surface Water Temperature: 9.4 degrees C
Air Temperature: 10.8 degrees C
Relative Humidity: 71%
Depth: 177.72 m

Personal Log

Welcome back, explorers!

Due to the injury to the deck hand, we are done fishing. Our trip has been cut a day short and we are now headed back to Kodiak. We should arrive tomorrow morning, and I will fly back home on the 30th.

The shortest route to Kodiak was through Whale Pass, a break in Kodiak Island. The pass made for some spectacular scenery.

The entrance to Whale Pass

The entrance to Whale Pass, from the back of the Oscar Dyson

Steep hills rolling down into the water were a common sight in the pass.

Steep hills rolling down into the water were a common sight in the pass.

nav point

An island with a navigational marker in whale pass.

mountain 1

There were some spectacular views of the mountains in the pass as well.

Mountains 2

Another view of the mountains.

Mountain 3

Another view of the mountains.

Mountain

And another...

mountain

Last one, I promise! We all liked the shape of this one.

waterfall

A waterfall drops away into the ocean.

The coolest part of the pass, though, is definitely the wildlife. We saw sea otters everywhere! Unfortunately, they were so fast and at a great enough distance that the following shot is the only decent one I was able to take.

otter

A sea otter at Whale Pass.

We also saw an animal that I have been hoping to see for a long time.

killer whales

Sorry about the grainy image, but it is the only one of the Orcas we were able to get.

We also saw a puffin, but it moved so quickly that there was no hope at a photo for it. Bummer. Several humpback whales were also spotted, along with numerous gulls and other seabirds.

Science and Technology Log

Today, lets talk about krill!

What are krill, you ask? They’re animals in the Phylum Arthropoda, which means they’re related to insects, spiders, crabs, lobsters, etc. They have jointed legs and an exoskeleton, are usually a couple of centimeters in length, and are reddish/orange-ish in color. They can often be found in dense schools near the surface of the water, and play an important role in the ecosystem as a source of food for lots of larger animals (like fish, whales, & penguins).

I’ve mentioned the two types of trawl gear that we use to catch fish, but if we want to catch smaller things like plankton, the mesh on those nets is way too small. Therefore, we use a third type of trawl called the Methot which has very fine mesh to corral the plankton down into a collection container at the end of the net. In addition to having a hard container at the end — as opposed to just a bag/codend that you see in the fish trawls — the Methot trawl also has a large metal frame at the beginning of the net. Check out the photos below.

The Methot trawl being taken from the water. Note the square frame.

container

The container that collects all of the plankton in the net.

After the net is brought back on deck, one of the fishermen or deck hands brings the container of krill into the fish lab. The first thing we do is dump the container into a sieve or a bucket and start picking out everything that isn’t krill. The two most common things that are collected (besides krill) are gelatinous animals (like jellyfish & salps) and larval fish. The fish get weighed (as one big unit, not individually) and then frozen for someone to look at later on.

fish

The larval fish that we separated from one plankton tow.

After sorting the catch, we’re left with a big pile of krill, which gets weighed. We then take a small subsample from the big pile of krill (it’s a totally random amount depending on how much we scoop out!) and then weigh the subsample. Then the fun begins, as I’m the one that does this job; I get to count every single individual krill in the subsample. Tedious work. All of the data is then entered into the computer system, and the krill and anything else that we’ve caught (besides the larval fish) are thrown back into the water.

Tammy sorts through the pile of krill.

Tammy sorts through the pile of krill.

counting krill

How many individual krill are in this picture?

Species Seen

Northern Fulmar
Gulls
Puffin
Humpback Whales
Killer Whale!!!
Sea Otters!!!

Reader Question(s) of the Day!

Q. What has been your favorite thing about this trip so far?

A. I’ve been asked this question several times over the course of the last few weeks, but I’ve waited until the end to answer it.

Truth be told, it’s almost impossible to pick a favorite thing that I’ve seen or done. There are so many candidates! Exploring the Buskin River and seeing bald eagles before we set sail was a blast! Eating fresh caught salmon for the first time was a great experience, as it just melted in my mouth. Leaving shore for the first time was a lot of fun, as there is no feeling like the salt air blowing past your face at the front of a boat. Trying to take pictures of flying birds with a digital camera was a challenge, and we all had a good time laughing at the blurred images. Getting better at photography is something I’ve always wanted to do, and I feel like I have improved that. The first fish lab with the sleeper shark was great! Working in the fish lab, as messy as it was, was also a lot of fun! The XBT prank that was pulled on me was one of the best executed pranks I’ve ever seen, and it was hilarious! Hanging out and reading Martin’s Game of Throne series during breaks with my fellow scientists was a lot of fun as well, as it was just like a book club. Today’s ride through Whale Pass with the otters, whales, and mountains was exactly what I dreamed Alaska would be like.

The scientists sense of humor also made it an enjoyable trip. For example, this is what happens when you play around with the net camera for too long.

Cam Trawl Dinner

See what I mean?

That being said, if I was absolutely forced to pick a favorite memory, it would probably the impromptu fishing trip at Sand Point. You know you love your job when you decide to keep going at it on your day off.

There will be one last log posted, so if you have questions please send them to me at jmoeller@knoxville-zoo.org!

Jason Moeller: June 25-27, 2011

NOAA TEACHER AT SEA
JASON MOELLER
ONBOARD NOAA SHIP OSCAR DYSON
JUNE 11 – JUNE 30, 2011

NOAA Teacher at Sea: Jason Moeller
Ship: Oscar Dyson
Mission: Walleye Pollock Survey
Geographic Location: Gulf of Alaska
Dates: June 25-27, 2011

Ship Data
Latitude: 55.58 N
Longitude: -159.16 W
Wind: 14.11
Surface Water Temperature: 7.2 degrees C
Air Temperature: 9.0 degrees C
Relative Humidity: 90%
Depth: 85.61

Personal Log
Anyone who has seen the show Deadliest Catchknows how dangerous crab fishing can be. Fishing for pollock, however, also has its dangers. Unfortunately, we found out the hard way. One of our deck hands caught his hand between a cable and the roller used to pull up the trawl net and hurt himself badly.

Cable

The cable and the roller.

Fortunately, the injuries are not life threatening and he will be fine. The injuries did require a hospital visit, and so we stopped at Sand Point to treat him.

Town

This is the town of Sand Point.

airstrip

Clouds hang over the hills at Sand Point. The airstrip is in the left edge of the photo.

We stayed at Sand Point for nearly 48 hours. What did we do? We fished, of course! We used long lines and hooks, and had a great time!

lines

Bill and Alex cast fishing lines in the harbor. We tied the lines off on the boat and hauled them up from time to time to check the bait.

Alex

Alex with a flounder that he caught! He also caught several cod and a 32-lb Pacific halibut!

cod

Cod and the flounder in a bucket!

Tammy

As with every fishing trip, we also managed to catch things that we didn't mean too! Tammy (the other NOAA Teacher at Sea) especially liked the kelp!

urchin

A few visitors always hitched a ride on the kelp we caught. Here is a tiny sea urchin.

crab

This crab was another hitchhiker on the kelp.

starfish

We were bottom fishing for Halibut, and a starfish, the largest one I've ever seen, went after the bait!

A one-day fishing license in Alaska costs $20.00. We had internet, so five of us went online and bought the fishing passes. Was it worth it?

Halibut

You bet it was! This is the 25-lb halibut I caught! It was AWESOME!!!

We filleted it and had the cooks make it for dinner. With the halibut, we also cut out the fleshy “cheeks” and ate them as sushi right on the spot! It doesn’t get any fresher (or tastier!) than that!

Science and Technology Log
Today we will look at the acoustic system of the Oscar Dyson! Acoustics is the science that studies how waves (including vibrations & sound waves) move through solids, liquids, and gases. The Oscar Dyson uses its acoustic system to find the pollock that we process.

The process begins when a piece of equipment called a transducer converts an electrical pulse into a sound wave. The transducers are located on the underside of the ship (in the water). The sound travels away from the vessel at roughly 1500 feet per minute, and continues to do so until the sound wave hits another object such as a bubble, plankton, a fish, or the bottom. When the sound wave hits an object, it reflects the sound wave, sending the sound wave back to the Oscar Dyson as an echo. Equipment onboard listens to the echo.

The computers look at two critical pieces of information from the returning sound wave. First, it measures the time that it took the echo to travel back to the ship. This piece of information gives the scientists onboard the distance the sound wave traveled. Remember that sound travels at roughly 1500 feet per minute. If the sound came back in one minute, then the object that the sound wave hit is 750 feet away (the sound traveled 750 feet to the object, hit the object, and then traveled 750 feet back to the boat).

The second critical piece of information is the intensity of the echo. The intensity of the echo tells the scientists how small or how large an object is, and this gives us an idea of what the sound wave hit. Tiny echos near the surface are almost certainly plankton, but larger objects in the midwater might be a school of fish.

good fishing

An image of the computer screen that shows a great number of fish. This was taken underneath the boat as we were line fishing in Sand Point.

poor fishing

The same spot as above, but with practically no fish.

fishing

An image of the screen during a trawl. You can actually see the net--it is the two brown lines that are running from left to right towards the top of the screen.

One of the things that surprised me the most was that fish and bubbles often look similar enough under water that it can fool the acoustics team into thinking that the bubbles are actually fish. This is because many species of fish have gas pockets inside of them, and so the readout looks very similar. The gas pockets are technically called “swim bladders” and they are used to help the fish control buoyancy in the water.

swimbladder

Swim bladder of a fish.

Species Seen
Northern Fulmar
Gulls
Cod
Pacific Halibut
Flounder
Sea Urchin
Crab
Kelp

Reader Question(s) of the Day
Today’s questions come from Kevin Hils, the Director of Chehaw Wild Animal Park in Chehaw, Georgia!

Q. Where does the ship name come from?
A. Oscar Dyson was an Alaska fisheries industry leader from Kodiak, Alaska. He is best known for pioneering research and development of Alaska’s groundfish, shrimp, and crab industry. Dyson was a founding partner of All Alaskan Seafoods, which was the first company actually controlled by the fishermen who owned the vessel. He also served on the North Pacific Fisheries Management council for nine years. He is in the United Fishermen of Alaska’s hall of fame for his work. The ship was christened by his wife, Mrs. Peggy Dyson-Malson, and launched on October 17, 2003.

Dyson

Oscar Dyson

launch

The launching of the Oscar Dyson

Q. How do you see this helping you teach at Knoxville Zoo, not an aquarium?
A. This will be a long answer. This experience will improve environmental education at the zoo in a variety of different ways.

First, this will better allow me to teach the Oceanography portion of my homeschool class that comes to the zoo every Tuesday. For example, I am in the process of creating a hands on fishing trip that will teach students about the research I have done aboard the Oscar Dyson and why that research is important. Homeschool students will not just benefit from this experience in Oceanography, but also in physics (when we look at sound and sonar) and other subjects as well from the technical aspects that I have learned during the course of the trip.

Scouts are another group that will greatly benefit from this experience as well. The Girl Scout council wishes to see a greater emphasis in the future on having the girls do science and getting real world experiences. While the girls are still going to desire the animal knowledge that the zoo can bring, they will also expect to do the science as well as learn about it. My experience aboard the Dyson will allow me to create workshops that can mimic a real world animal research experience, as I can now explain and show how research is done in the field.

The same can be said of the boy scouts.

In addition, one of the most common badges that is taught to boy scout groups that come in is the fish and wildlife merit badge. In the past, the badge has primarily focused on the wildlife aspect of this topic. However, I now have the knowledge to write and teach a fisheries portion for that merit badge, as opposed to quickly covering it and moving on. This will enrich future scouts who visit the zoo for this program.

A major focus for all scouts is the concept of Leave No Trace, where scouts are supposed to leave an area the way they found it. The fisheries research being done aboard the Dyson is focused toward that same goal in the ocean, where we are attempting to keep the pollock population as we found it, creating a sustainable fishery. The goal aboard the Dyson is similar to the goal in scouting. We need to be sustainable, we need to be environmentally friendly, and we need to leave no trace behind.

School children on field trips will greatly benefit, especially students in the adaptations section. There are some bizarre adaptations that I never knew about! For example, sleeper sharks slow, deliberate movement coupled with their fin and body shape basically make them the stealth fighter of the fish world. They can catch fish twice as fast as they are! Lumpsuckers are neat critters too! This knowledge will enhance their experience at the zoo during field trip programs.

Finally, I can pass the knowledge from this experience on to my coworkers. This will not only better the experience of my students, but it will also improve the outreach programs, the bedtime programs, the camps, and other programming done at the zoo.

Q. Are you old enough to be on a ship? You look like you’re 13???!!!!
A. SHHHHHHH!!!! You weren’t supposed to tell them my real age! They think I’m 24!

Jason Moeller: June 23-24, 2011

NOAA TEACHER AT SEA
JASON MOELLER
ONBOARD NOAA SHIP OSCAR DYSON
JUNE 11-JUNE 30, 2011

NOAA Teacher at Sea: Jason Moeller
Ship: Oscar Dyson
Mission: Walleye Pollock Survey
Geographic Location: Gulf of Alaska
Date: June 23-24, 2011

Ship Data
Latitude: 54.86 N
Longitude: -161.68 W
Wind: 12.1 knots
Surface Water Temperature: 8.5 degrees C
Air Temperature: 9.1 degrees C
Relative Humidity: 95%
Depth: 52.43 m

Personal Log

As I mentioned in the last post, everything here has settled into a routine from a personal standpoint, and on that end there is not much to write about. However, there were three things that broke up the monotony. First, as always, the scenery was beautiful.

Cove

Snow covered hills shield the cove from the winds. Look how smooth the ocean is!

cove2

The view off the back of the ship.

Second, I found out that even with all of the modern equipment on board, catching fish is still not guaranteed. We trawled three times last night on the 23rd and caught a total of 14 fish in all three trawls! Remember, a good sample size for one trawl is supposed to be 300 pollock, so this is the equivalent of fishing all day long and catching a minnow that just happened to swim into the fishing hook.

The first trawl caught absolutely nothing, as the fish dove underneath the net to escape the danger. The second trawl caught two pacific ocean perch and one pollock, and the third trawl caught eleven pollock. All in all, not the best fishing day.

pollock

The lone pollock from the second trawl.

Despite the poor fishing, we did bring up this neat little critter.

isopod

This is an isopod! These animals are very similar to the pillbugs (roly-polys) that we find in the US. Many marine isopods are parasites, and can be a danger to fish!

isopod2

This is the bottom view of an isopod

The third thing to break up the monotony was the Aleutian Islands earthquake. On the evening of June 23rd, a magnitude 7.2 earthquake shook the Aleutian Islands. According to ABC news, the earthquake was centered about 1,200 miles southwest of Anchorage. The quake spawned a brief tsunami warning that caused a large number of Dutch Harbor residents (Dutch Harbor is the home base of the show Deadliest Catch) to head for higher ground. We had been in the Aleutian Islands and Dutch Harbor area on our survey route, but had left two days before, so the Oscar Dysonwas completely unaffected by the earthquake.

Dutch Harbor residents seek higher ground after a tsunami warning was issued. AP photo by Jim Paulin.

Science and Technology Log

In order to obtain photos of all of this neat sealife, we first have to catch it! We catch fish by trawling for them. Some of you may not know exactly what I’m talking about, so let me explain. Trawling is a fishing method that pulls a long mesh net behind a boat in order to collect fish. Trawling is used to collect fish for both scientific purposes (like we’re doing) and also in commercial fishing operations. We have two types of fish trawls onboard the NOAA Ship Oscar Dyson — a mid-water trawl net and a bottom trawl net. We’ve used both types throughout our cruise, so let me tell you a little about each.

The mid-water trawl net is just as it sounds — it collects fish from the middle of the water column — not those that live on the seafloor, not those that live at the surface. The technical name for the net we have is an Aleutian Wing Trawl (AWT) — it’s commonly used by the commercial fishing industry.

trawl net

Part of the mid-water trawl net as it's being deployed.

The end of the net where the fish first enter has very large mesh, which is used to corral the fish and push them towards the bag at the end. The mesh gets progressively smaller and smaller the further into it you go, and at the very end (where the collecting bag is), the mesh size is 0.5 inches. The end (where the bag is, or where the fish are actually collected) is called the codend.

codend

One of the codends on the deck of the Oscar Dyson

This is the kind of net we use when we want to collect a pollock sample, because pollock are found in the water column, as opposed to right on the seafloor (in other words, pollock aren’t benthic animals). Our particular net is also modified a little from a “normal” AWT. Our trawl has three codends (collecting bags) on it, each of which can be opened and closed with a switch that is controlled onboard the ship. The mechanism that opens and closes each of the 3 codends is called the Multiple Opening and Closing Codend (MOCC) device. Using the MOCC gives us the ability to obtain 3 discrete samples of fish, which can then be processed in the fish lab.

MOCC

The MOCC apparatus, with the 3 nets extending off.

bar

The nets are opened and closed using a series of metal bars. (The bar here is the piece of metal running across the middle of the photo). The net has 6 of these bars. When the first bar is released, the first codend is ready to take in fish. When the second bar is dropped, the first codend is closed. The third and fourth bars open and close the second codend, and the fifth and sixth bars open and close the third codend.

trigger

This is the trigger mechanism for the codends on the MOCC. When the codend is released, the trigger mechanism is up. When the codend is locked and ready to go, it is in the down position.

One other modification we have on our mid-water trawl net is the attachment of a video camera to the net, so we can actually see the fish that are going into the codends.

camera

This is the camera apparatus hooked up to the trawl.

When we spot a school of fish on the acoustic displays, we then radio the bridge (where the captain is) and the deck (where the fishermen are) to let them know that we’d like to fish in a certain spot. The fishermen that are in charge of deploying the net can mechanically control how deep the net goes using hydraulic gears, and the depth that we fish at varies at each sampling location. Once the gear is deployed, it stays in the water for an amount of time determined by the amount of fish in the area, and then the fishermen begin to reel in the net. See the videos below to get an idea of how long the trawl nets are — they’re being reeled in the videos. Once all of the net (it’s VERY long — over 500 ft) is reeled back in, the fish in the codends are unloaded onto a big table on the deck using a crane. From there, the fish move into the lab and we begin processing them.

Videos of the net being reeled in and additional photos are below!

http://www.youtube.com/watch?v=I50Q4SJzzaE
http://www.youtube.com/watch?v=VVAqbAGcxRs

net end

This is the end of the trawl net. They are lines that basically hold onto the net.

codend

One of the codends before being opened up onto the conveyor belt. We are inside waiting for the fish to arrive.

open codend

Opening the codend to release the fish catch!

reeled in

The mid-water trawl net all reeled in!

The other type of trawl gear that we use is a bottom trawl, and again, it’s just as it sounds. The bottom trawl is outfitted with roller-type wheels that sort of roll and/or bounce over the seafloor. We use this trawl to collect benthic organisms like rockfish, Pacific ocean perch, and invertebrates. There’s usually a random pollock or cod in there, too. The biggest problem with bottom trawls is that the net can sometimes get snagged on rocks on the bottom, resulting in a hole being ripped in the net. Obviously, we try to avoid bottom trawling in rocky areas, but we can never be 100% sure that there aren’t any rogue rocks sitting on the bottom :)

bottom trawl

The mesh and wheels of the bottom trawl.

btrawl2

More of the bottom trawl

btrawlreel

The bottom trawl, all reeled in!

Species Seen

Northern Fulmar
Gulls
Pollock
Pacific Ocean Perch (aka rockfish)
coral
Isopod

Reader Question(s) of the Day!

The first question for today comes from Rich, Wanda, and Ryan Ellis! Ryan is in the homeschool Tuesday class at the Zoo.

Q. We looked up what an anemone was and we found it was some kind of plant. Is that correct?

A. Great question! The answer is both yes and no. There is a type of flowering plant called the anemone. There are about 120 different species, and they are in the buttercup family. For one example of the plant, look below!

Anemone Nemorosa

Anemone Nemorosa. Taken from pacificbulbsociety.org

The sea anemone, however, is not actually a plant but an animal! Anemones are classified as cnidarians, which are animals that have specialized cells for capturing prey! In anemones, these are called nematocysts, which have toxin and a harpoon like structure to deliver the toxin. When the nematocysts are touched, the harpoon structure injects the toxin into the animal that touches it.

Cnidarians also have bodies consist of mesoglea, a non living jelly like substance. They generally have a mouth that is surrounded by the tentacles mentioned above.

Anemone

The Anemone we found.

The second question comes from my wife Olivia.

Q. What has surprised you most about this trip? Any unexpected or odd situations?

A. I think the thing that has surprised me the most is the amount of down time I have had. When I came on, I assumed that it would be physical and intense, like the show Deadliest Catch, where I would spend my whole time fishing and then working on the science. I figured that I would be absolutely toast by the end of my shift.

While I have worked hard and learned a lot, I have quite a bit of down time. Processing a catch takes about one hour, and we fish on average once or twice a night. That means I am processing fish for roughly two hours at most, and my shift is twelve hours. I have gotten a fair amount of extra work done, as well as a lot of pleasure reading and movie watching.

As for unexpected and odd situations, I didn’t really expect to get your camera killed by a wave. Fortunately, I have been allowed to use the scientist camera, and have been able to scavenge photos from other cameras, so I will still have plenty of pictures.

Another technological oddball that I didn’t think about beforehand was that certain headings (mainly if we are going north) will cut off the internet, which is normally fantastic. It is frustrating to have a photo 90% downloaded only to have the ship change vectors, head north, and cut off the download, forcing me to redownload the whole photo.
I also didn’t expect that the fish would be able to dodge the trawl net as effectively as they have. We have had four or five “misses” so far because the fish will not stay in one spot and let us catch them. While the use of sonar and acoustics has greatly improved our ability to catch fish, catching fish is by no means assured.

Perhaps the biggest “Are you kidding me?” moment though, comes from James and David Segrest asking me about sharks (June 17-18 post). An hour after I read the question, we trawled for the first time of the trip, and naturally the first thing we caught was the sleeper shark. Also naturally, I haven’t seen a shark since. Sometimes, you just get lucky.

Jason Moeller: June 21-22, 2011

NOAA TEACHER AT SEA
JASON MOELLER
ONBOARD NOAA SHIP OSCAR DYSON
JUNE 11 – JUNE 30, 2011

NOAA Teacher at Sea: Jason Moeller
Ship: Oscar Dyson
Mission: Walleye Pollock Survey
Geographic Location: Gulf of Alaska
Dates: June 21-22, 2011

Ship Data
Latitude: 55.03N
Longitude: -163.08W
Wind: 17.81 knots
Surface Water Temperature: 6.7 degrees celsius
Air Temperature: 10.10 degrees celsius
Humidity: 85%
Depth: 82.03 meters

Personal Log
Welcome back, explorers!

June 21
Today has been the calmest evening since I boarded the Oscar Dyson. The night shift did not fish at all, which meant that I basically had an evening off! Even the evenings we have fished have been relatively calm. It takes us about an hour to an hour and a half to process a haul of fish, and up to this point we average about one haul per night. That gives me quite a bit of down time! When I am on shift, that down time is usually spent in one of two places.

computer lab

The first spot is the computer lab in the acoustics room. This is the room where we wait for the haul to be brought in. I write the logs, lesson plan, check emails, and surf the web during quiet times.

lounge

This is the lounge. The cabinet under the TV has over 500 movies, and a movie is usually playing when I walk in. Behind the couch is a large bookshelf with several hundred books, so I have done a fair amount of pleasure reading as well.

When I am not sitting in one of these two places, I am usually running around the ship with my camera taking nature photos. Below are the best nature photos of the past three days.

Volcano

One of the coolest things about the Aleutian islands has to be the number of volcanoes that can be seen. This is the one on Unimak Island.

volcano2

A second picture of the same volcano.

coast

This is just a cool rock formation off of the coast. The Oscar Dyson has been hugging the coast the entire trip, which has been great for scenery.

gull

A gull skims the water by the Oscar Dyson.

gull2

A gull wings toward the Oscar Dyson

June 22
We resumed fishing today! These trawls brought in quite a few species that I had not seen before, along with the ever plentiful pollock.

Net

The net, filled with fish!

Jason by belt

Jason waits for the net to load the fish onto the conveyor belt.

Jason with flounder

Here, I am separating the arrowtooth flounder from the pollock.

skate

We managed to catch a skate in the net! Skates are very close relatives to sharks. We quickly measured it and then released it into the ocean.

skate 2

A second photograph of the skate.

lumpsucker

Do you remember the little lumpsucker from a few posts back? This is what an adult looks like!

lumpsucker2

The lumpsucker was slimy! I tried to pick it up with my bare hands, and the slime gummed up my hands so that I couldn't pick it up! Even with gloves designed for gripping fish I had trouble holding on.

lumpsucker3

A closeup of the lumpsucker

sculpin

This fish is called a sculpin.

crab

I finally saw a crab! None of us know what was attached to it, but the scientists believe that it was an anemone.

starfish

This is a starfish the net pulled up.

Science and Technology Log
There is no Science and Technology Log with this post.

Species Seen
Humpback Whales
Northern Fulmar
Gulls
Rockfish
Walleye Pollock
Lumpsucker
Arrowtooth Flounder
Atka Makerel
Salmon
Sculpin
Copepods
Isopods
Skate
Crab!!!

Reader Question(s) of the Day!

Today’s question comes from James and David Segrest, who are two of my homeschool students!

Q. What do you eat while you are on your adventures? Do you get to catch and eat fish?

The food is great! Our chef has a degree in culinary arts, and has made some amazing meals!

I wake up at 2:30 pm for my 4 pm to 4 am night shift, and usually start my day with a small bowl of oatmeal and a toasted bagel. At 5 pm, about two hours after breakfast, dinner is served, and I will eat a huge meal then too. Every meal has two main courses, a vegetable, a bread, and dessert. We have had a wide variety of main courses which have included bratwurst, steak, gumbo with king crab, fish, chicken parmesan, spaghetti with meatballs, and others!

We will often eat some of the fish we catch, usually salmon and rockfish since those provide the  best eating. The salmon disappears to the kitchen so quickly that I have not actually been able to get a photo of one! We have not caught a halibut in the trawl net yet, otherwise we would likely have eaten that as well. Yum! We have not yet eaten pollock, as it is viewed as being a much lower quality fish compared with the rockfish and salmon.

I’m out of questions, so please email me at jmoeller@knoxville-zoo.org with those questions please!

Jason Moeller: June 19-20, 2011

NOAA TEACHER AT SEA
JASON MOELLER
ONBOARD NOAA SHIP OSCAR DYSON
JUNE 11 – JUNE 30, 2011

NOAA Teacher at Sea: Jason Moeller
Ship: Oscar Dyson
Mission: Walleye Pollock Survey
Geographic Location: Gulf of Alaska
Dates: June 19-20, 2011

Ship Data
Latitude: 54.29 N
Longitude: -165.13 W
Wind: 12.31 knots
Surface Water Temperature: 5.5 degrees Celsius
Air Temperature: 6.1 degrees Celsius
Humidity: 97%
Depth: 140.99 meters

Personal Log

Welcome aboard, explorers!

To be honest, there is not a great deal to write about for the personal log. My daily schedule has settled in quite nicely! I get off work at 4 in the morning, shower, sleep until 2:30 in the afternoon, and then head down to the acoustics room where we track the fish. When we are processing a catch (see the science and technology section of this blog), I am in the fish lab wearing bright orange waterproof clothes that make me resemble a traffic cone.

fishing gear

Jason in fishing gear.

The rest of the time is down time, which is spent reading, working on the blog, learning about the ship, and dreaming up lesson plans that I can use to torment my students. I hope they are interested in a summer fishing trip, as that is the one I am currently planning.

Most of the blog work involves running around and taking photographs. My wife’s camera was soaked beyond repair during the prank that was pulled (see the previous post) as Sarah was holding the camera when the wave came over the railing. Fortunately, there was another camera on board.

Our survey is keeping us very close to the coast and islands of Alaska. As a result, I’ve gotten some gorgeous photos. This place is just beautiful.

An island shrouded by clouds.

An island shrouded by clouds.

waterfall

A waterfall falls off into the ocean.

Wind

Jason in front of an island. It was a bit windy, but at least it was sunny!

view

Mountaintops visible just above the island coast. Jake took this photo while I was in the fish lab.

sunset

Sunset over Alaskan waters.

Science and Technology Log

Pollock

Walleye Pollock waiting to be processed

We finally started fishing! As I mentioned in my very first blog, the Oscar Dyson is surveying walleye pollock, which is an important fish species here in Alaska. Walleye pollock make up 56.3% of the groundfish catch in Alaska, and is eaten in fast food restaurants around the world such as Wendy’s, McDonalds, and Burger King. It is also used to make imitation crabmeat.

Our first catch had a little over 300 walleye pollock, and we processed all of them. Three hundred is an ideal sample size for this species. If, for example, we had caught 2,000 pollock, we would only have processed 300 of the fish, and we would have released the rest of them back into the ocean.

The photo captions below will provide a tour of the fish lab as well as introduce blog readers to the data we wish to collect and how scientists aboard the Oscar Dyson collect it.

Conveyer belt

This is the conveyor belt. After the catch is pulled on board, it is loaded onto this conveyor belt and moved down the belt and into the lab. At this point, the scientists separate the pollock from the rest of the sea life that was accidentally in the net. Today, the majority of the "extra" sea life were brittle stars, sponges, and a few squid.

Gender Box

Once the pollock and other sea life are separated, they are moved to this box to be sexed. In order to do this, we would have to cut the fish open and look at the internal organs of the fish. Once this was done, females would go over the yellow sign on the right and into the box that was hidden behind it. The males went into the box on the left.

Length Station

Once we had determined the pollock's gender, we moved to the measuring station, which was on the other side of the last station. We laid each individual fish on the table on top of the ruler, and then measured the fish from the head to the fork of its tail. We recorded the length by tapping the table at the fork of the fish's tail with a sensor that we carried in our hand. A sensor in the table recorded the data and sent it to the computer monitor seen above the table.

measuring pollock

Jason measures a pollock on the board!

From this catch (we will do this for any following catch as well) we also took and preserved twenty stomachs from random fish. This was done in order to later analyze what the pollock had eaten before they died. We also took forty otoliths from random pollock as well. An otolith is the ear bone of the pollock, and it is incredibly important to researchers as they will tell the pollock’s age in a similar manner to the way a tree’s rings will.

This is a pollock otolith!

This is a pollock otolith!

Stored Otoliths

After removing the otolith from the fish, they were put into these vials. Each pair of otoliths received their own vial.

While looking at pollock is the main focus of the survey, we did run into some other neat critters in this haul as well!

Atka Makerel

This is an Atka Mackerel. We also caught a salmon, but I didn't get a good look at it. Our kitchen grabbed it!

Basket Star

This is a basket starfish. We were trawling close to the bottom and pulled it up in the nets.

Lumpsucker

This is a lumpsucker! They spend their lives on the bottom where they eat slow-moving animals such as worms and mollusks.

Arrowtooth Flounder

This is an arrowtooth flounder. These are not very good eating fish, and are not the flounder found in the supermarket. Check out the nasty teeth in the photo below this one!

Flounder teeth

I wouldn't want to be bitten by this fish!

Rockfish

Finally, this is a rockfish! The red snapper that we see in the marketplace is often this fish instead.

Species Seen

Albatross
Northern Fulmar
Gulls
Rockfish
Walleye Pollock
Lumpsucker
Arrowtooth Flounder
Atka Mackerel
Salmon
Pacific Grenadier
Squid
Shrimp
Basket Starfish

Reader Question(s) of the Day!

Today’s question is actually a request. It comes from Tish Neilson, one of our homeschool parents.

Hey Jason -
I had a super favor to ask of you. There is a little girl from Jackson’s school that is a 5th grader and she was recently diagnosed with leukemia. There have been some bracelets created for her that say “Going Bananas for Anna” to show support and several moms and I have gotten together and are putting together a scrapbook for her and trying to get as many people as possible wearing her bracelets in really cool places. Then we are having them take pictures to send to us to put in her scrapbook so she can she how far her bracelets have traveled and how many people are pulling for her. If it’s possible to do so and you would be willing to do it I would LOVE to try and get you a bracelet to take some pictures and send to me from Alaska. Her nickname is Anna Banana and she is always asking for pictures and such so that is why we came up with this idea.
Tish Neilson

Unfortunately, I had left for Alaska before I received the email, and as a result I do not have a bracelet. Hopefully, a sign will work just as well.

For Anna

Hi Anna! This is Unimak Island! It is one of the Aleutian Islands off the coast of Alaska! Hang in there, we are rooting for you!

Jason Moeller: June 17-18, 2011

NOAA TEACHER AT SEA
JASON MOELLER
ONBOARD NOAA SHIP OSCAR DYSON
JUNE 11 – JUNE 30, 2011

NOAA Teacher at Sea: Jason Moeller
Ship: Oscar Dyson
Mission: Walleye Pollock Survey
Geographic Location: Gulf of Alaska
Dates: June 17-18, 2011

Ship Data
Latitude: 52.34 N
Longitude: -167.51 W
Wind Speed: 7.25 knots
Surface Water Temperature: 6.6 Degrees C
Air Temperature: 7.1 Degrees C
Relative Humidity: 101%
Depth:  63.53 meters

All of the above information was found on http://shiptracker.noaa.gov. Readers can use this site to track exactly where I am at all times!

Personal Log

Welcome back, explorers!

It has been a very eventful 24 hours! We have started fishing, but have done so little that I will wait to talk about that in the next log. Tammy, the other Teacher at Sea, has not begun fishing yet, and as we will be writing the science and technology log together, I will save the fishing stories until she has had a chance to fish.

After turning in last night’s log, we managed to spot eight or nine humpback whales on our starboard side that appeared to be feeding at the surface. They were too far away to get any decent photos, but it was a lot of fun to watch the spouts from their blowholes tower up into the air.

Whale Spouts

Ten whale spouts rise in the distance.

This afternoon started off by dropping an expendable bathythermograph (from here on out this will be referred to as an XBT). The XBT measures the temperature and depth of the water column where it is dropped (there will be more on this in the Science and Technology section). I was told that I would be dropping the XBT this time, and was led off by Sarah and Abby (two of the scientists on board) to get ready.

Ready to launch!

The first thing I had to do was to get dressed. I was told the XBT would feel and sound like firing a shotgun, so I had to put on eye, ear and head protection. I was also put in a fireman suit to protect my body from the kickback, since I am so small. The XBT launcher is the tube in my hands.

Pranked!

This is me launching the XBT. Why no smoke? All we actually needed to do was drop the device over the side. The whole shotgun experience was a prank pulled off by the scientists on all of the new guys. Their acting was great! When I turned towards Sarah at one point with the launcher, she ducked out of the way as if afraid I would accidentally fire it. I fell for it hook, line, and sinker.

However, the prank backfired somewhat. As the scientists were all laughing, a huge wave came up over the side of the ship and drenched us. I got nailed, but since I was in all of the gear, I stayed dry with the hem of my jeans being the only casualty. Sarah didn’t get so lucky. Fun times!

Sarah

Sarah looking a bit wet.

Science and Technology Log
Today, we will be looking at the XBT (the expendable bathythermograph). Bathy refers to the depth, and thermo refers to the temperature. This probe measures the depth and temperature of the water column when it is dropped over the starboard side of the ship.
“Dropping” isn’t exactly the right phrase to use. We use a launcher that resembles a gun. See the photo below to get an idea of what the launcher looks like.
XBT Launcher

This is the XBT Launcher.

Pin

The silver loop is the pin for the launcher. To launch the probe, we pulled the pin and flung out our arm. The momentum pushed the probe out of the tube and into the water below.

The probe

The probe.

The probe is connected to a length of copper wire, which runs continuously as the probe sinks through the water column. It is important to launch the probe as far away from the ship as possible, as the copper wire should never touch the ship. If the wire were to touch the ship, the data feed back to the ship would be disrupted and we would have to launch another probe, which is a waste of money and equipment. The survey technician decides to cut the wire when he/she has determined that sufficient data has been acquired. This normally occurs when the probe hits the ocean floor.

This is a quick and convenient way to collect data on the depth and temperature of the water column. While the ship has other methods of collecting this data (such as a Conductivity, Temperature, and Depth (CTD) probe), the XBT is a simpler system that does not need to be recovered (as opposed to the CTD).

CTD

A CTD

Data collected from the most recent XBT.
Latitude: 53.20 degrees N
Longitude: 167.46 degrees W
Temperature at surface: 6.7 degrees C
Temperature at bottom: 5.1 degrees C
Thermocline: 0 meters to 25 meters.
The thermocline is the area where the most rapid temperature change occurs. Beneath the thermocline, the temperature remains relatively constant.
Thermocline

This is a graph showing a thermocline in a body of water. Source: http://www.windows2universe.org

Species Seen

Humpback Whales

Northern Fulmar

Albatross

Northern Smoothtongue

Walleye Pollock

Mackerel

Lumpsucker

Squid

Pacific Sleeper Shark

Reader Question(s) of the Day!

Today’s reader questions come from James and David Segrest, who are two of my students in Knoxville Zoo’s homeschool Tuesday classes!

1. Did pirates ever travel the path you are on now? Are there any out there now?

A. As far as I know, there are no pirates currently operating in Alaska, and according to the scientists, there were not any on the specific route that we are now traveling. However, Alaska does have a history of piracy! In 1910, a man named James Robert Heckem invented a floating fish trap that was designed to catch salmon. The trap was able to divert migrating salmon away from their normal route and into a funnel, which dumped the fish off into a circular wire net. There, the fish would swim around until they were taken from the trap.

Salmon and trap

Workers remove salmon from a fish trap in 1938. Historic Photo Courtesy of the U.S. Fish & Wildlife - Fisheries Collection - Photographer: Archival photograph by Mr. Sean Linehan, NOS, NGS.

For people who liked eating fish, this was a great thing! The salmon could be caught quickly with less work, and it was fresh, as the salmon would still be alive when taken from the trap. For the traditional fisherman, however, this was terrible news. The fishermen could not compete with the traps and found that they could not make a living. The result was that the fishermen began raiding the floating traps, using any means possible.

Salmon barge

A barge of salmon going to a cannery. Fishermen could not compete with traps that could catch more fish. Historic Photo Courtesy of the U.S. Fish & Wildlife - Fisheries Collection -Photographer: Archival photograph by Mr. Sean Linehan, NOS, NGS

The most common method used was bribery. The canneries that operated the traps would hire individuals to watch the traps. Fishermen would bribe the watchers, steal the fish, and then leave the area. The practice became so common that the canneries began to hire people to watch the trap-watchers.

2. Have you seen any sharks? Are there any sharks that roam the waters where you are traveling?

shark

Hi James and David! Here is your shark! It's a Pacific Sleeper Shark.

shark in net

The shark in the net

Shark

Another image of the shark on the conveyor belt.

This is a Pacific Sleeper Shark. It is called a sleeper shark as it does not appear to move a great deal, choosing instead to glide with very little movement of its fins. As a result, it does not make any noise underwater, making it the owl of the shark world. It hunts much faster fish (pollock, flounders, rockfish) by being stealthy. They are also known to eat crabs, octopus, and even snails! It is one of two animals known to eat giant squid, with the other one being sperm whales, although it is believed that these sharks probably scavenge the bodies of the much larger squid.

The other shark commonly seen is the salmon shark. Hopefully, we will catch one of these and I will have photos later in the trip.

Jason Moeller: June 14-16, 2011

NOAA TEACHER AT SEA
JASON MOELLER
ONBOARD NOAA SHIP OSCAR DYSON
JUNE 11 – JUNE 30, 2011

NOAA Teacher at Sea: Jason Moeller
Ship: Oscar Dyson
Mission: Walleye Pollock Survey
Geographic Location: Gulf of Alaska
Dates: June 14-16, 2011

Personal Log

Welcome back, explorers!

June 14

I think I posted my last log too soon, because as soon as I hit the send button interesting things began to happen. First, I was called up to see some Mountain Goats feeding in the wild! I was able to take a picture of them as well! (Well, kind of…)

goats

The mountain goats were so far away I had to use binoculars just to spot them. If you can spot the two tiny white dots to the right of the snow, that is them! There is also one that is on the left hand side in the middle of the photograph. You will have to take my word for it.

While this was going on, the professional members of the science team were still calibrating the sonar that we are going to use to catch the fish! I have explained the process in the captions of the following photographs.

sonar balls

Calibrating starts with these little balls. The one used to calibrate our sonar was made of Tungsten (like the black ball at the top)

Pole

The ball was suspended underneath the water on three poles, placed in a triangular shape, around the ship. This is a photo of one of the poles.

Screen.

Once the ball was placed underneath the boat, the scientist swept sound waves off of the ball and used the above screen to see where the sound waves were striking the ball and reflecting. This allowed them to adjust the sound waves to hit the ball (or out in the ocean, the fish) exactly where they wanted it. This optimizes the amount of sound coming back to the boat and paints a better picture of what is under the water.

The process took several hours, but once we finished, we headed back out to sea to start the two-day journey towards our first fishing spot!

June 15-16

The most common sight off of the boat for the past two days has been this one.

Water

Water, water, everywhere

We are currently in Unimak Pass, which will lead us to the Bering Sea! Unimak Pass is the fastest sea route from the United States into Asia, and as a result is a common merchant route between Seattle and Japan. It is also the best way to avoid rough seas and bad weather when travelling between the Gulf of Alaska and the Bering Sea, as it receives some cover from the landmass.

The Bering Sea likely needs no introduction, as it is arguably the best crab fishing waters on the planet and is well-known from the television show The Deadliest Catch. Aside from crab, the Bering Sea is teeming with life such as pollock, flounder, salmon, and halibut. As a result of this diverse and tasty biomass, the Bering Sea is an incredibly important area to the world’s fisheries.

Steaming towards our destination has kept us away from any land, but there are still things to do and to see! We did a second dry cast of the net, but this time two different pieces of equipment were tested.

The net

The first piece of equipment was a special net for taking samples. The net has three sections, called codends, which can be opened and closed individually. You can see two of the codends in this photo. On top of the green net, you should see black netting that is lined with white rope. These are the codends.

net 2

This is a better view of the codends. The codends are opened and closed using a series of six bars. When the first bar is dropped, the first codend is able to take in fish. When the second bar is dropped, the codend is unable to take in fish. The bar system has not worked incredibly well, and there is talk of removing one of the codends to make the net easier to use.

camera

The second piece of equipment was this camera, which was attached to the net. It allowed us to see what was coming in the net. Even though this was a dry run and we were not catching anything, I still saw a few Pollock in the camera!

Even though this was a test run and we did not catch any fish, the birds saw the net moving and came to investigate. The remaining photographs for the personal log are of the several species of birds that flew by the boat.

Bird 1

A Northern Fulmar flies alongside the Oscar Dyson

Bird 2

An albatross (by the thin wire just below the spot the water meets the horizon) flies away from the Oscar Dyson

Bird 3

Fulmar's and Gulls wheel about the Oscar Dyson, looking for fish.

Science and Technology Log

This section of the blog will be written after we start fishing for Pollock in the next day or so!

New Species

Mountain Goats

Northern Fulmar

Albatross

Gulls

Reader Question(s) of the Day!

First, I owe a belated shout out to Dr. John, Knoxville Zoo’s IT technician. He lent me the computer that I am currently using to post these logs, and I forgot to mention him in the last post. Thanks Dr. John!

The two questions of the day also come from Kaci, a future Teacher at Sea with NOAA.

1. What is it like sleeping on the boat?

A. Honestly, I am being jostled around quite a bit. Part of this is due to the way the beds are set up. The beds go from port to starboard (or right to left for the landlubbers out there) instead of fore to aft (front to back). This means that when the boat rolls, my feet will often be higher than my head, which causes all of blood to rush to my head. I still haven’t gotten used to the feeling yet.

Part of the jostling, though, is my fault. I had heard that most individuals took the bottom bunks given the option, and since I was one of the first individuals on board, I decided to be polite and give my roommate, who outranked me by some 10-15 years at sea, the bottom bunk. It turns out that the reason people pick the bottom bunk is that the top bunk moves around more since it is higher off the floor. I’ve heard stories about people being thrown from the top bunk in heavy seas as well.

The most comfortable place to sleep has turned out to be the beanbag chair in the common room. It is considered rude to go into your room if your shift ends early, as your roommate may still be sleeping. My shift ended two hours early the other night, so I sat down on the beanbag chair to catch some zs. The ship’s rocking was greatly reduced by the bean bag chair, and I slept very well for the next couple of hours.

2. Is it stressful so far?

A. The only stressful part of the trip so far has been the seasickness, which I have not yet been able to shake. The rest of it has been a lot of fun!

Jason Moeller: June 13-14, 2011

NOAA TEACHER AT SEA
JASON MOELLER
ONBOARD NOAA SHIP OSCAR DYSON
JUNE 11 – JUNE 30, 2011

NOAA Teacher at Sea: Jason Moeller
Ship: Oscar Dyson
Mission: Walleye Pollock Survey
Geographic Location: Gulf of Alaska
Dates: June 13-14, 2011

Personal Log

Welcome back explorers!

June 13th

Kodiak Dock

A view of the dock as we finally leave!

We are finally underway! The weather cleared up on the 12th, so the rest of our scientific party was finally able to make it in from Anchorage. The scientists did not arrive until later in the day, but at 9:00 in the morning, the Oscar Dyson finally left port in order to run some tests, including a practice cast of the fishing net!

island in harbor

An island in Kodiak Harbor. Kodiak is hidden by the island in this photograph.

Open Ocean

Open ocean, straight ahead!

Net spool

Casting the net was a tricky process that took about 30-45 minutes. (I did not time the process.) The casting started by unhooking the edge of the net from this giant spool. The net was wrapped tightly around this spool when not in use.

net caster

Next, the net was hooked to the mechanism that would lower the net in the water. (The mechanism is the yellow object that looks like an upside-down field goal post)

net hooked up

This is a photo of the net being hooked up to the casting mechanism

net being unwound

Once attached, the mechanism then pulled up on the net to start unwinding the net from the spool. Once the net was properly unwinding, the net was lowered into the water to begin fishing!

Once the tests were completed, we headed back towards the harbor to pick up the rest of the scientists. Once we were all on the vessel, we held a quick briefing on the ship rules. This was followed by a meeting among the scientists where shifts were handed out. I am on the 4 PM to 4 AM shift, also known as the night shift! Hopefully, I will see some northern lights during the few hours that we actually have darkness. After the meeting and a fast guided tour, I went to bed, as I was extremely seasick. Hopefully, that is a temporary issue.

June 14

I woke up to discover that the ship has anchored in a protected cove for the day in order to calibrate the acoustic devices on board that are used for fishing. This is a time consuming but necessary process as we will need the baseline data that the scientists receive by calibrating the device. However, that means that there is not much to do except for eating, sleeping, watching movies (we have over 1,000 aboard) and enjoying the beautiful scenery. As we are in a quiet cove with no waves, I am not currently sick and decided to enjoy the scenery.

cove 1

The next four images are from the back of the ship. If printed, you can go from left to right and get a panoramic view.

cove 2

cove 3

cove 4

Jellyfish

I know the image is bad, but can you see the white blob in the middle of the water? That is a jellyfish!

mountain

Here is a photograph from the side of the boat of a snow-capped mountain. Even though it is summer here, there is still quite a bit of snow.

waterfall

This is another image off the side of the boat. A waterfall falls off into the ocean.

waterfall 2

A closer shot of the waterfall. This place is just gorgeous!

Science and Technology

The Science and technology segment of the blog will be written at the start of the Walleye Pollock survey, which should begin in the next day or so.

Species Seen

Jellyfish!

Arctic Tern

Gulls

Reader Question(s) of the Day

I received a few questions from Kaci, who will be a TAS here in September!

1. What is the temperature here?

A. The temperature has been in the mid to upper 40s, so much cooler then back home in Knoxville, Tennessee, where we were getting 90 degree days! It’s actually been pleasant, and I have not been cold so far on this trip.

2. What did you bring?

A. The temperature affected what I brought in terms of clothing. I started with a weeks worth of shorts and t-shirts, which I stuffed in my check in bag, and then two days worth of clothes in my backpack just in case my checked bag didn’t get it. Our other TAS, Tammy, got stuck here with only the clothes on her back, so a backup set of clothes was necessary. In addition, I have several pairs of jeans, 2-3 sweatshirts, a heavy coat, and under armor to round out the clothing. The under armor and heavy coat have been great, it’s why I haven’t been cold. I also packed  all of my toiletries (though I forgot shampoo and had to buy it here.

In terms of electronics, I have my iPod, computer, and my wife’s camera with me. (A special shout out to Olivia is in order here, thanks for letting me use the camera! I am being VERY careful with it!). I have a lot of batteries for the camera, which I have needed since I’ve already gone through a pair!

Just for fun, I brought my hockey goalie glove and ball to use in working out. We have weight rooms aboard the ship, which I will definitely need since the food is fantastic!

I hope that answers those questions, and I will answer more in the next post!

Jason Moeller: June 12, 2011

NOAA TEACHER AT SEA
JASON MOELLER
ONBOARD NOAA SHIP OSCAR DYSON
JUNE 11 – JUNE 30, 2011

NOAA Teacher at Sea: Jason Moeller
Ship: Oscar Dyson
Mission: Walleye Pollock Survey
Geographic Location: Gulf of Alaska
Date: June 12th, 2011

Personal Log

Welcome back explorers!

fog over Kodiak

Fog over Kodiak

Once again, I woke up this morning to a thick, heavy fog and drizzling rain that enveloped Kodiak like a wet, soggy blanket. While Tammy, who will be the other Teacher at Sea with me, was able to make it into Kodiak, the majority of our science party is still stuck in Anchorage, trying to get aboard a flight. Even though Tammy was able to make it in, her suitcase and clothes did not follow suit, and she was forced to make a Wal-mart run. The result of the weather has been a delay on the cruise, and we hope to set sail for equipment trials tomorrow.

As usual, I had a great day regardless of the rain. I started by helping our steward (cook) stock up on supplies for the ship’s galley. For 40 people on a 19 day cruise, we have $25,000 worth of food stashed away on board. It takes quite a bit of money to stock up a ship!

A river to the ocean

This is a photo of the river I explored weaving its way to the ocean.

After helping shop for the fresh produce, I had the rest of the day off, so I turned to my favorite Kodiak past time, and decided to embark on another bear photo hunt. In addition to bears, I was also on the lookout for salmon (I do not count eating salmon as seeing it) and bald eagles, both of which should be common. Today’s location was the same river that I explored on my first day, but I was much further south. My starting point was where the river met the ocean, and then I walked inland. I will let the photos and captions talk from this point on.

The Beach

I turned left to explore the beach first. It is a black sand beach, the first I have ever seen.

The Beach pic 2

This photo is of the same beach, and better shows the fog cover we had today.

Waterfall 1

While walking down the beach, I noticed a freshwater stream coming out of the woods and winding down to the ocean. I ducked under a pine tree at the edge of the beach and saw this waterfall.

Waterfall 2

Another photo of the waterfall.

Waterfall 3

The same waterfall, falling away towards the ocean.

Bald Eagle

After I left the waterfall, I continued to walk down the beach, and just happened to look up at the right moment to capture this bald eagle, high above the trees. They are so common here that the eagles are jokingly called roaches of the north.

2 eagles

I saw a total of 8 bald eagles, including this pair in the trees. The fog makes them a bit difficult to pick out.

River 1

After exploring the beach, I headed upstream to look for salmon and bears. This is what the river looked like by the ocean.

path

The path by the river was difficult, if it was there at all. Most of the time, I just trudged my way through it. There was not a dry spot on me by the time I finished the hike. It was worth it though.

Marsh

For the first half mile, the river was in a marshland, which the photo shows accurately. However, the marshland quickly gave way to pine forests, which can be seen in the next image.

River in the woods

The river running through the woods.

woods

A photo of the woods running alongside of the river.

Lichen

In the end, I didn't see any bears or salmon in the river, and the vegetation became too thick to go on without a trail. As I was leaving, however, to head back to the ocean and catch my ride home, I ran across this piece of white lichen which contrasted with the darkened woods surrounding it. For me, the photo was worth the trip.

Science and Technology Log

The Science and Technology log will begin at the start of the Walleye Pollock survey.

Species Seen

Bald Eagles!!!

Arctic Tern

Gulls

Magpie

Reader Question(s) of the Day!

Reader questions of the day will start at the beginning of the Walleye Pollock survey! At the moment, I have not received any questions yet, so please send them in! I can take questions at jmoeller@knoxville-zoo.org.

Jason Moeller: June 11, 2011

NOAA TEACHER AT SEA
JASON MOELLER
ONBOARD NOAA SHIP OSCAR DYSON
JUNE 11 – JUNE 30, 2011

NOAA Teacher at Sea: Jason Moeller
Ship: Oscar Dyson
Mission: Walleye Pollock Survey
Geographic Location: Gulf of Alaska
Date: June 11, 2011

Personal Log

Welcome back, explorers!

Kodiak

Kodiak, Alaska

Today was my official first day in Kodiak Alaska! Kodiak is a small city on Kodiak Island, which lies off the southern coast of Alaska. The city had a population of 6,653 people in 2009, and is likely growing due to its unique population of animals, including salmon, Kodiak bears, and bald eagles. The city’s main livelihood comes from the ocean, where halibut, pollock, several species of salmon, scallops, and crabs are pulled from the waters surrounding the island. A second source of income comes from tourism.

I woke up today to find the city covered in mist with rain steadily falling. This was bad news for several of our scientists and Tammy, the other teacher at sea on our trip, as they were unable to fly in from Anchorage due to the weather.

Stateroom

Jason's Stateroom on the Oscar Dyson

The weather, however, did not stop me from having an active day in the city. The first thing that I did was move onto the ship into my stateroom, where I will be sleeping during the research expedition. I was surprised at the size, as the room was larger than several college dorm rooms that I had seen.

Once I was moved in, I began to explore the ship. While I have not been given an official guided tour as of yet (that will happen when Tammy arrives), I was able to move around and find some of the rooms that I will be in frequently during the trip.

Acoustic Room

This is the sound/acoustic room, where we will look for the fish using sonar!

Command Deck

This is the command deck of the Oscar Dyson. If I ask nicely, will they let me drive?

Mess hall

The all important mess hall!

Kodiak Bridge

Fred Zharoff Memorial Bridge

In talking with several individuals onboard, I found out that some of the best hiking in the area was within walking distance of the Oscar Dyson. Even better, hikers in this area occasionally saw bears. As I still wanted to see a bear in the wild, I immediately left for the bridge that would take me to another island right off the coast of Kodiak Island. I passed through town on the way.

After walking through town, I reached this bridge and crossed it.

The Island

This is the island that I was headed to.

After crossing the bridge, I came across the following park which had some stunning nature trails. I am going to let my photographs do the talking for this next part of the blog, as words do not do justice for the beauty of this place.

Tree

There were many of these thick bodied pines in the park.

Moss

This image, as well as the next, shows the abundant moss in the woods. It carpeted the forest floor completely!

moss image 2

ocean view

A nice view of the ocean from the trail.

ocean view 2

Another beautiful view of the ocean from the trail.

moss on bushes

Many of the low-lying bushes also had moss and lichens on them.

Elderberries

One of the most common trees was the Pacific Red Elderberry. Elderberries are often used for making wines, and occasionally as the punchline in a joke.

Trees

A few Elderberry trees!

Surprisingly, I did not see a great deal of wildlife, only seeing songbirds. I still have time to see a bear, but I did not spot one today and did not see any bear tracks. Deer tracks were in abundance but I did not see any deer on the pathways.

All in all, I was out hiking on the trails for over three hours, and was soaking wet when I got back.

After the hike and a change of clothes (it rained the entire time), I went out to dinner with a few of the ship’s engineers to a sushi/seafood restaurant. The salmon just melted in my mouth, I have never had salmon that fresh. I also had the opportunity to taste Alaskan king crab, and wish that I hadn’t. I am now addicted, and it is expensive at $47.00 a pound being the market price!

Science and Technology Log

The science and technology section of this blog will begin after the survey of the Walleye Pollock has been started.

Species Seen

Arctic Tern

Pacific Red Elderberry

Reader Question(s) of the Day!

The reader question(s) of the day will start after the survey of the walleye pollock begins. I will answer at least one question during each log, and hopefully will be answering more than one. Please submit your questions to me at jmoeller@knoxville-zoo.org.

Jason Moeller: June 10, 2011

NOAA TEACHER AT SEA
JASON MOELLER
ONBOARD NOAA SHIP OSCAR DYSON
JUNE 11 – JUNE 30, 2011

NOAA Teacher at Sea: Jason Moeller
Ship: Oscar Dyson
Mission: Walleye Pollock Survey
Geographic Location: Gulf of Alaska
Date: June 10, 2011

Personal Log

Welcome aboard, explorers!

For those of you who do not know me, my name is Jason Moeller, and I am the on-site coordinator of education at Knoxville Zoological Gardens. I teach the school groups, scouts, homeschool students, and student researchers who come to the Zoo to learn about the natural world.

Oscar Dyson

The Oscar Dyson sits in Kodiak Harbor

The National Oceanic and Atmospheric Administration, or NOAA, has invited me on board the Oscar Dyson, a research vessel that will be spending the next three weeks researching a fish known as the walleye pollock in Alaska’s Bering Sea. According to NOAA’s website, the pollock made up 56.3% of Alaska’s groundfish catch, easily making it the most caught fish in Alaska’s waters. Pollock is commonly found in imitation crabmeat as well as a variety of fast food fish sandwiches.

The crew of the Oscar Dyson will be studying the population of pollock over the course of the next three weeks. I will be working with Tammy Orilio (another teacher at sea) in processing the catch. Orientation will be on June 11th, and we will set sail on June 12th.

Clouds from an airplane

Clouds above Canada

Today (June 10th), however, was mainly a travel day. After waking up at four in the morning, I caught a two-hour flight from Knoxville to Chicago, which was then followed by a six-hour flight to Anchorage. Finally, I had a forty-one minute flight from Anchorage to Kodiak. Cloud cover marred what would have been spectacular scenery, but there were some beautiful views from the aircraft otherwise.

After a quick look at the Oscar Dyson and dinner at the hotel, I went to explore the river running by our hotel. According to several fishermen, Sockeye Salmon are beginning their yearly run upriver. Grizzly Bears, though uncommon this time of year, are also occasionally spotted.

Possible Bear track

Unknown Large Track

Unfortunately, I did not see bears or salmon, but I did see this track. While faded, it did look suspiciously like the mold of a track back at the zoo.

While I did not see any bears or salmon, I did get lucky in other regards. I saw a beautiful red fox, which moved too quickly to catch on film, and rabbits were in abundance. The scenery was also beautiful.

Sideways trees

Wind on a hill shaped these trees

river in Kodiak

A river in Kodiak

Science and Technology Log

The Science and Technology segment of this blog will begin after the Walleye Pollock Survey aboard the Oscar Dyson begins.

Species Seen

Red Fox

Rabbit

Reader Question(s) of the Day!

The reader question(s) of the day will also begin after the start of the Walleye Pollock Survey aboard the Oscar Dyson. Readers are encouraged to send questions to jnmoelle@knoxville-zoo.org. I will attempt to answer one or more questions in future posts.