Kacey Shaffer: All Good Things… August 13, 2014

NOAA Teacher at Sea

Kacey Shaffer

Aboard NOAA Ship Oscar Dyson

July 26 – August 13, 2014

Mission: Walleye Pollock Survey

Geographical Location: Bering Sea

Date: August 13, 2014

Weather information from the Bridge:

Air Temperature: 12º C

Wind Speed: 10 knots

Wind Direction: 306.62 º

Weather Conditions: Clear

Latitude: 53º 51.38 N

Longitude: 166º 34.85 W

Science and Technology Log:

Before we get into detail about data and where all of it ends up, let’s talk acronyms. This trip has been a lot like working in the Special Education world with what we like to call “Alphabet Soup.” We use acronyms a lot and so does the NOAA Science world. Here are a few important acronyms…

AFSC – Alaska Fisheries Science Center (located in Seattle, WA)

MACE – Midwater Assessment and Conservation Engineering Program (also in Seattle)

CLAMS – Catch Logger for Acoustic Midwater Surveys

Drop TS – Dropped Target Strength System

CTD – Conductivity, Temperature and Depth System

SBE – Sea-bird Electronics Temperature-Depth Recorder

We recorded data in a program called CLAMS as we processed each haul. The CLAMS (see above: Catch Logger for Acoustic Midwater Surveys) software was written by two NOAA Scientists. Data can be entered for length, weight, sex and development stage. It also assigns a specimen number to each otolith vial so the otoliths can be traced back to a specific fish. This is the CLAMS screen from my very first haul on the Oscar Dyson.

Kacey's first haul on the Oscar Dyson.

Kacey’s first haul on the Oscar Dyson.

From the Species List in the top left corner you can see I was measuring the length of Walleye Pollock- Adult. In that particular haul we also had Age 2 Pollock, a Chum Salmon and Chrysaora melanaster (a jellyfish or two). There is the graph in the lower left corner that plots the sizes in a bar graph and the summary tells me how many fish I measured – 462! When we finish in the Wet Lab we all exit out of CLAMS and Robert, a zooplankton ecologist working on our cruise, ducks into the Chem Lab to export our data. There were a total of 142 hauls processed during the 2014 Summer Walleye Pollock Survey (June 12 – August 13) so this process has happened 142 times in the last two months!

Next, it is time to export the data we collected onto a server known as MACEBASE. MACEBASE is the server that stores all the data collected on a Pollock survey. Not only will the data I helped collect live in infamy on MACEBASE, all the data collected over the last several years lives there, too. CLAMS data isn’t the only piece of data stored on MACEBASE. Information from the echosounding system, and SBE (Sea-bird Electronics temperature depth recorder) are uploaded as well.

We’ve reached the end of the summer survey. Now what? 142 hauls, two months of echosounder recordings, four Drop TS deployments and 57 CTD’s. There have also been 2660 sets of otoliths collected. Scientists who work for the MACE program will analyze all of this information and a biomass will be determined. What is a biomass? Some may think of it as biological material derived from living or recently living organisms. In this case, biomass refers to the total population of Walleye Pollock in the Bering Sea. In a few weeks our Chief Scientist Taina Honkalehto will present the findings of the survey to the Bering Sea Plan Team.

That team reviews the 2014 NOAA Fisheries survey results and Pollock fishing industry information and makes science-based recommendations to the North Pacific Fishery Management Council, who ultimately decide on Walleye Pollock quotas for 2015. Think about Ohio’s deer hunting season for a minute. Each hunter is given a limit on how many deer they can tag each year. In Pickaway & Ross counties we are limited to three deer – two either sex permits and one antlerless permit. If every deer hunter in Ohio was allowed to kill as many deer as they pleased the deer population could be depleted beyond recovery. The same goes for Pollock in the Bering Sea. Commercial fisheries are given quotas and that is the maximum amount of Pollock they are allowed to catch during a given year. The scientific research we are conducting helps ensure the Pollock population remains strong and healthy for years to come.

Personal Log:

Earlier today I took a trip down to the Engine Room. I can’t believe I waited until we were almost back to Dutch Harbor to check out this part of the ship. The Oscar Dyson is pretty much a floating city! Put on some ear protection…it’s about to get loud!

Kacey stands by one of four diesel engines on the Oscar Dyson.

Kacey stands by one of four diesel engines on the Oscar Dyson. (Photo credit: Sweet William)

Why must we wear ear protection? That large machine behind me! It is a 3512 Caterpillar diesel engine.  The diesel engine powers an electric generator. The electric generator gives power to an electric motor which turns the shaft. There are four engine/generator set ups and one shaft on the Dyson. The shaft turns resulting in the propeller turning, thus making us move! When we are cruising along slowly we can get by with using one engine/generator to turn the shaft. Most of the time we are speeding along at 12 knots, which requires us to use multiple engines/generators to get the shaft going. Here is a shot of the shaft.

The shaft of the Oscar Dyson.

The shaft of the Oscar Dyson.

 

Engineering Operation Station

Engineering Operation Station

The EOS, or Engineering Operation Station, is the fifth location where the ship can be controlled. The other four locations are on the Bridge.

Engine Data Screen provides information about the engines, generators and shaft.

Engine Data Screen provides information about the engines, generators and shaft.

This screen provides Engineers with important info about the generators (four on board) and how hard they’re working. At the time of my tour the ship was running on two generators (#1 and #2) as shown on the right side of the screen. #3 and #4 were secured, or taking a break. The Officer of the Deck, who is on the Bridge, can also see this screen. You can see an Ordered Shaft RPM (revolutions per minute) and an Actual Shaft RPM boxes. The Ordered Shaft RPM is changed by the Officer on Deck depending on the situation. During normal underway conditions the shaft is running at 100-110 RPMs. During fishing operations the shaft is between 30 and 65 RPMs.

The port side winch of the Oscar Dyson.

The port side winch of the Oscar Dyson.

When I talked about the trawling process I mentioned that the Chief Boatswain is able to extend the opening of the net really far behind the stern (back) of the ship. This is the port side winch that is reeled out during trawling operations. There are around 4300 meters of cable on that reel! How many feet is that?

When Lt. Ostapenko and ENS Gilman were teaching me how to steer this ship they emphasized how sensitive the steering wheel is. Only a little fingertip push to the left can really make a huge difference in the ship’s course. This is the hydraulic system that controls the rudder, which steers the ship left or right. The actual rudder is hidden down below, under water. I’m told it is a large metal plate that stands twice as tall as me.  This tour really opened my eyes to a whole city that operates below the deck I’ve been working on for the last 18 days. Without all of these pieces of equipment long missions would not be possible. Because the Oscar Dyson is well-equipped it is able to sail up to forty days at a time. What keeps it from sailing longer voyages? Food supply!

And just like that I remembered all good things must come to an end. This is the end of the road for the Summer Walleye Pollock Survey and my time with the Oscar Dyson. We have cleaned and packed the science areas of the ship. Next we’ll be packing our bags and cleaning our staterooms. In a matter of hours we’ll be docking and saying our goodbyes. There have been many times over the last 19 days where I’ve stood, staring out the windows of the Bridge and thinking about how lucky I am. I will never be able to express how thankful I am for this opportunity and how it will impact my life for many, many years. A huge THANK YOU goes to the staff of NOAA Teacher at Sea. My fellow shipmates have been beyond welcoming and patient with me. Thank you, thank you, THANK YOU to everyone on board the Dyson!! I wish you safe travels and happy fishing!

To Team Bluefin Tuna (night shift Science Crew), thank you for your guidance, ice cream eating habits, card game instruction, movie watching enthusiasm, many laughs and the phrase “It is time.” Thanks for the memories! I owe y’all big time!  

Did you know? The ship also has a sewage treatment facility and water evaporation system onboard. The MSD is a septic tank/water treatment machine and the water evaporation system distills seawater into fresh potable (drinking and cooking) water.

Gregory Cook, On Sea Sickness and Good People, August 10, 2014

NOAA Teacher at Sea

Gregory Cook

Aboard NOAA Ship Oscar Dyson

July 26 – August 13, 2014

Mission: Annual Walleye Pollock Survey

Geographical Area: Bering Sea

Date: August 10, 2014


Science and Technology Log:

Last night and afternoon was by far the craziest we’ve seen on the Oscar Dyson. The winds were up to 35 knots (about 40 miles an hour). The waves were averaging 12 feet in height, and sometimes reaching 15-18 feet in height. Right now I’m sitting on the bridge and waves are around 8 feet. With every rise the horizon disappears and I’m looking up at stark grey clouds. With every drop the window fills with views of the sea, with the horizon appearing just below the top of the window frames.

UpDownUpDownUpDown

In the space of three seconds, the view from atop the bridge of the Oscar Dyson goes from looking up to the sky to down at the sea. The above pic is a MILD example.

Ensign Gilman, a member of NOAA Corps, explains to me how the same thing that makes the Bering Sea good for fish makes things rough for fishermen.

“This part of the Bering Sea is shallow compared to the open ocean. That makes the water easier for the wind to pick up and create waves. When strong winds come off Russia and Alaska, it kicks up a lot of wave action,” Ensign Gilman says.

Andrew, Bill and Nate

Lt. Andrew Ostapenko, Survey Tech Bill Potts, and Ens. Nathaniel Gilman on the Bridge

“It’s not so much about the swells (wave height),” he continues. “It’s about the steepness of the wave, and how much time you have to recover from the last wave.” He starts counting between the waves… “one… two… three… three seconds between wave heights… that’s a pretty high frequency. With no time to recover, the ship can get rocked around pretty rough.”

Rough is right! Last night I got shook around like the last jelly bean in the jar. I seriously considered finding some rope to tie myself into my bunk. There were moments when it seemed an angry giraffe was jumping on my bunk. I may or may not have shouted angrily at Sir Isaac Newton that night.

Which brings us to Sea Sickness.

Lt. Paul Hoffman, a Physician’s Assistant with the U.S. Public Health Service, explains how sea sickness works.

“The inner ears are made up of tubes that allow us to sense motion in three ways,” Hoffman explains. “Forward/back, left/right, and up/down. While that’s the main way our brain tells us where we are, we use other senses as well.” He goes on to explain that every point of contact… feet and hands, especially, tell the brain more information about where we are in the world.

“But another, very important piece, are your eyes. Your eyes are a way to confirm where you are in the world. Sea Sickness tends to happen when your ears are experiencing motion that your eyes can’t confirm,” Hoffman says.

For example, when you’re getting bounced around in your cabin (room), but nothing around you APPEARS to be moving (walls, chair, desk, etc) your brain, essentially, freaks out. It’s not connected to anything rational. It’s not enough to say “Duhh, brain, I’m on a boat. Of course this happens.” It happens in a part of the brain that’s not controlled by conscious thought. You can’t, as far as I can tell, think your way out of it.

Hoffman goes on to explain a very simple solution: Go look at the sea.

“When you get out on deck, the motion of the boat doesn’t stop, but your eyes can look at the horizon… they can confirm what your ears have been trying to tell you… that you really are going up and down. And while it won’t stop the boat from bouncing you around, your stomach will probably feel a lot better,” Hoffman says.

The Deck is your Friend.

Everything is easier on deck! Clockwise from left: Winch Operator Pete Stoeckle and myself near Cape Navarin, Russia. Oceanographer Nate Lauffenburger and myself crossing the International Date Line. Survey Tech Alyssa Pourmonir and Chief Scientist Taina Honkalehto near Cape Navarin, Russia.

And he’s right. Being up on the bridge… watching the Oscar Dyson plow into those stout waves… my brain has settled into things. The world is back to normal. Well, as normal as things can get on a ship more than a third of the way around the world, that is.

Personal Log:

Let’s meet a few of the good folks on the Oscar Dyson. 

NOAA Crew Member Alyssa Pourmonir

Job Title: Survey Technician

Alyssa and the Giant Jelly!

Survey Tech Alyssa Pourmonir assesses a giant jelly fish!

Responsibilities on the Dyson: “I’m a liaison between crew and scientists, work with scientists in the wet lab, put sensors onto the trawling nets, focus on safety, maintaining all scientific data and equipment on board.” A liaison is someone who connects two people or groups of people.

Education Level Required: “A Bachelors degree in the sciences.” Alyssa has a BS in Marine and Environmental Science from SUNY Maritime with minors in oceanography and meteorology.

Job or career you’ve had before this: “I was a life guard/swim instructor in high school, then I was in the Coast Guard for three years. Life guarding is the BEST job in high school!”

Goal: “I strive to bring about positive change in the world through science.”

Weirdest thing you ever took out of the Sea: “Lump Sucker: They have big flappy eyebrows… they kinda look like a bowling ball.”

Lump Sucker!

Lump Sucker! When provoked, this fish sucks in so much water that it becomes too big for most other fish to swallow. That’s its defense mechanism! It sort of looks like a cross between a bowling ball and grumpy cat!

Dirtiest job you’ve ever had to do on a ship: “Sexing the fish (by cutting them open and looking at the fish’s gonads… sometimes they explode!) is pretty gross, but cleaning the PCO2 filter is nasty.  There are these marine organisms that get in there and cling to the filter and you have to push them off with your hands… they get all slimy!”

Engineer Rico Speights

Engineer Rico Speights shows off how nasty a filter can be! He and his wife (Chief Steward Ava) sail the Bering Sea together with NOAA!

NOAA Rotating Technician Ricardo Guevara

Job Title: Electronics Technician

Responsibilities on the Dyson: “I maintain and upkeep most of the low voltage electronics on the ship, like computer networking, radio, television systems, sensors, navigation systems. All the equipment that can “talk,” that can communicate with other devices, I take care of that.”

Education level Required: High school diploma and experience. “I have a high school diploma and some college. The majority of my knowledge comes from experience… 23 years in the military.”

Tech Guevara

Technician Ricardo Guevara shows me an ultrasonic anemometer… It can tell the wind speed by the time it takes the wind to get from one fork to the other.

Job or career you’ve had before this: “I was a telecommunications specialist with the United States Air Force… I managed encryption systems and associated keymat for secure communications.” This means he worked with secret codes.

Trickiest problem you’ve solved for NOAA: “There was a science station way out on the outer edge of the Hawaiian Islands that was running their internet off of dial-up via satellite phone when the whole thing shut down on them… ‘Blue Screen of Death’ style. We couldn’t just swap out the computer because of all the sensitive information on it. I figured out how to repair the disk without tearing the machine apart. Folks were extremely happy with the result… it was very important to the scientists’ work.”

What are you working on now? “I’m migrating most of the ship’s computers from windows xp to Windows 7. I’m also troubleshooting the DirecTV system. The problem with DirecTV is that the Multi-Switch for the receivers isn’t communicating directly with the satellite. Our antenna sees the satellite, but the satellite cannot ‘shake hands’ with our receiver system.” And that means no Red Sox games on TV! Having entertainment available for the crew is important when you’re out to sea for two to three weeks at a time!

What’s a challenging part of your job on the Dyson? “I don’t like it, but I do it when I have to… sometimes in this job you have to work pretty high up. Sometimes I have to climb the ship’s mast for antenna and wind sensor maintenance. It’s windy up there… and eagles aren’t afraid of you up there. That’s their place!”

Lt. Paul Hoffman

Job Title: Physician Assistant (or P.A.) with the U.S. Public Health Service

Paul and Peggy

Lt. Paul Huffman and the small boat Peggy D behind him. Lt. Huffman is with the U.S. Public Health Service. But secretly I call him the Bat Man of Health Care. Peggy Dyson is a beloved part of the Alaska Fishing Industry’s history. Before the internet and satellite telephones, her radio service served as a vital link home for fishermen out at sea.  She was married to Oscar Dyson, the man for whom the ship was named.

Responsibilities on the Dyson: He’s effectively the ship’s doctor. “Whenever a NOAA ship travels outside 200 miles of the U.S. coast, they need to be able to provide an increased level of medical care. That’s what I do,” says Hoffman.

Education required for this career: “Usually a Masters degree from a Physician’s Assistant school with certification.”

Job or career you’ve had before this: “Ten and a half years in the U.S. Army, I started off as an EMT. Then I went on to LPN (Licensed Practical Nurse) school, and then blessed with a chance to go on to PA school. I served in Iraq in 2007-2008, then returned for 2010-2011.”

Most satisfying thing you’ve seen or done in your career: “Knowing that you personally had an impact on somebody’s life… keeping somebody alive. We stabilized one of our soldiers and then had a helicopter evac (evacuation) under adverse situations. Situations like that are what make being a PA worthwhile.”

Could you explain what the Public Health Service is for folks that might not be familiar with it?

“The Public Health Service is one of the seven branches of the U.S. Military. It’s a non-weaponized, non-combative, all-officer corps that falls under the Department of Health and Human Services. We’re entirely medical related. Primary deployments (when they get sent into action) are related to national emergency situations… hurricanes, earth quakes… anywhere where state and local resources are overrun… they can request additional resources… that’s where we step in. Hurricane Katrina, the Earthquake in Haiti… a lot of officers saw deployment there. Personally, I’ve been employed in Indian Health Services in California and NOAA’s Aircraft Operations Center (AOC)… they’re the hurricane hunters,” Hoffman concludes.

Kids, when you’ve been around Lt. Hoffman for a while, you realize “adverse conditions” to him are a little tougher than a traffic jam or missing a homework assignment. I’ve decided to call him, and the rest of the Public Health Service, “The Batman of Health Care.” When somebody lights up the Bat Signal, they’re there to help people feel better.

Coming up next: International Teamwork!

 

Kacey Shaffer: Fish Scales. Fish Tales. August 8, 2014

NOAA Teacher at Sea

Kacey Shaffer

Aboard NOAA Ship Oscar Dyson

July 26 – August 13, 2014

 

Mission: Walleye Pollock Survey

Geographical Location: Bering Sea

Date: August 8, 2014
Weather information from the Bridge:

Air Temperature: 11° C

Wind Speed: 27 knots

Wind Direction: 30°

Weather Conditions: High winds and high seas

Latitude: 60° 35.97 N

Longitude: 178° 56.08 W
Science and Technology Log:

If you recall from my last post we left off with fish on the table ready to be sorted and processed. Before we go into the Wet Lab/Fish Lab we need to get geared up. Go ahead and put on your boots, bibs, gloves and a jacket if you’re cold. You should look like this when you’re ready for work…

 

This is the gear you'll need in the Wet Lab. It can get pretty slimy in there! (Photo Credit: Emily)

This is the gear you’ll need in the Wet Lab. It can get pretty slimy in there! (Photo Credit: Emily)

The first order of business is sorting the catch. We don’t have a magic net that only catches Pollock. Sometimes we pick up other treats along the way. Some of the cool things we’ve brought in are crabs, squid, many types of jellyfish and the occasional salmon. One person stands on each side of the conveyor belt and picks these other species out so they aren’t weighed in with our Pollock catch. It is very important that we only weigh Pollock as we sort so our data are valid. After all the Pollock have been weighed, we then weigh the other items from the haul. Here are some shots from the conveyor belt.

 

Kacey lifts the door on the table so the fish will slide down onto the conveyor belt. This is when other species are pulled out. (Photo Credit: Sandi)

Kacey lifts the door on the table so the fish will slide down onto the conveyor belt. This is when other species are pulled out. (Photo Credit: Sandi)

At the end of the conveyor belt, Pollock are put into baskets, weighed and put into the sorting bin. (Photo Credit: Sandi)

At the end of the conveyor belt, Pollock are put into baskets, weighed and put into the sorting bin. (Photo Credit: Sandi)

Not every single fish in our net is put into the sorting bin. Only random selection from the catch goes to the sorting bin. The remaining fish from the haul are returned back to the sea. Those fish who find themselves in the sorting bin are cut open to determine their sex. You can’t tell the sex of the fish just by looking at the outside. You have to cut them open, slide the liver to the side and look for the reproductive organs. Males have a rope-like strand as testes. Females have ovaries, which are sacs similar to the stomach but are a distinctly different color.

 

This is the sorting bin. Can you guess what Blokes and Sheilas means?

This is the sorting bin. Can you guess what Blokes and Sheilas means?

The white, rope-like structure is the male reproductive organ.

The white, rope-like structure is the male reproductive organ.

The pinkish colored sac is one of the female's ovaries. It contains thousands of eggs!

The pinkish colored sac is one of the female’s ovaries. It contains thousands of eggs!

Kacey uses a scalpel to cut the fish. She slides the liver out and looks for the reproductive organs. Is it a male or female? (Photo Credit: Darin)

Kacey uses a scalpel to cut the fish. She slides the liver out and looks for the reproductive organs. Is it a male or female? (Photo Credit: Darin)

Okay, no more slicing open fish. For now! The next step is to measure the length of all the fish we just separated by sex. One of the scientists goes to the blokes side and another goes to the sheilas side. We have a handy-dandy tool used to measure and record the lengths called an Ichthystick. I can’t imagine processing fish without it!

The Ichthystick is used to record the length of fish. A special tool held in the hand has a magnet inside that makes a connection with a magnet strip inside the board. It automatically registers a length and records it in a computer program called Clams

The Ichthystick is used to record the length of fish. A special tool held in the hand has a magnet inside that makes a connection with a magnet strip inside the board. It automatically registers a length and records it in a computer program called Clams

Kacey measures the length of a male with the Ichthystick. She holds the tool in her right hand and places it at the fork in the fish’s tail. A special sound alerts her when the data is recorded. (Photo Credit: Darin)

Kacey measures the length of a male with the Ichthystick. She holds the tool in her right hand and places it at the fork in the fish’s tail. A special sound alerts her when the data is recorded. (Photo Credit: Darin)

That is the end of the line for those Pollock but we still have a basket waiting for us. A random sample is pulled off the conveyor belt and set to the side for another type of data collection. The Pollock in this special basket will be individually weighed, lengths will be taken and a scientist will determine if it is a male or female. Then we remove the otoliths. What are otoliths? They are small bones inside a fish’s skull that can tell us the age of the fish. Think of a tree and how we can count the rings of a tree to know how old it is. This is the same concept. For this special sample we remove the otoliths, which are labeled and given to a lab on land where a scientist will carefully examine them under a microscope. The scientist will be able to connect the vial containing the otoliths to the other data collected on that fish (length, weight, sex) because each fish in this sample is given a unique specimen number. This is all part of our mission, which is analyzing the health and population of Pollock in the Bering Sea!

Kacey scans a barcode placed on an otolith vial. Robert is removing the otoliths from each fish and Kacey places them in the vial. It is important to make sure the otoliths are placed in the vial that corresponds to the fish Robert measured. (Photo Credit: Emily)

Kacey scans a barcode placed on an otolith vial. Robert is removing the otoliths from each fish and Kacey places them in the vial. It is important to make sure the otoliths are placed in the vial that corresponds to the fish Robert measured. (Photo Credit: Emily)

 

Kacey removes an otolith from a fish Robert cut open. The otoliths are placed in the vial Kacey is holding. (Photo Credit: Emily)

Kacey removes an otolith from a fish Robert cut open. The otoliths are placed in the vial Kacey is holding. (Photo Credit: Emily)

At this point we have just about collected all the data we need for this haul. Each time we haul in a catch this process is completed. As of today, our survey has completed 28 hauls. Thank goodness we have a day shift and a night shift to share the responsibility. That would be a lot of fish for one crew to process! For our next topic we’ll take a look at how the data is recorded and what happens after we’ve completed our mission. By the way, “blokes” are males and “sheilas” are females. Now please excuse us while we go wash fish scales off of every surface in the Wet Lab, including ourselves!

Personal Log:

Just so you know, we’re not starving out here. In fact, we’re stuffed to the gills – pun completely intended. Our Chief Steward Ava and her assistant Adam whip up some delicious meals. Since I am on night shift I do miss the traditional breakfast served each morning. Sometimes, like today, I am up for lunch. I’m really glad I was or I would have missed out on enchiladas. That would have been a terrible crisis! Most people who know me realize there is never enough Mexican food in my life! Tacos (hard and soft), rice and beans were served along with the enchiladas. Each meal is quite a spread! If I have missed lunch I’ll grab a bowl of cereal to hold me over until supper. I bet you’ll never guess we eat a lot of seafood on board. There is usually a fish dish at supper. We even had crab legs one night and fried shrimp another. Some other supper dishes include pork chops, BBQ ribs, baked steak, turkey, rice, mashed potatoes, and macaroni and cheese plus there are always a couple vegetable dishes to choose from. We can’t forget about dessert, either. Cookies, cakes, brownies or pies are served at nearly every meal. It didn’t take long for me to find the ice cream cooler, either. What else would one eat at midnight?!

Ava and Adam are always open to suggestions as well. Someone told Ava the night shift Science Crew was really missing breakfast foods so a few days ago we had breakfast for supper. Not only did they make a traditional supper meal, they made a complete breakfast meal, too! We had pancakes, waffles, bacon, eggs, and hashbrowns. It was so thoughtful of them to do that for us, especially on top of making a full meal for the rest of the crew. Thanks Ava and Adam!

There are situations where a crew member might not be able to make it to the Mess during our set serving schedule. Deck Crew could be putting a net in or taking it out or Science Crew could be processing a catch. We never have to worry, though. Another great thing about Ava and Adam is they will make you a plate, wrap it up and put it in the fridge so you have a meal for later.

Like I said, we’re not going hungry any time soon! Here are some shots from the Mess Deck (dining room).

Mess Deck on the Oscar Dyson.

Mess Deck on the Oscar Dyson.

Mess Deck on the Oscar Dyson. Can you guess why there are tennis balls on the legs of the chairs?

Mess Deck on the Oscar Dyson. Can you guess why there are tennis balls on the legs of the chairs?

There are always multiple options for every meal. If you’re hungry on this ship you must be the pickiest eater on Earth!

There are always multiple options for every meal. If you’re hungry on this ship you must be the pickiest eater on Earth!

Did you know?

Not only are otoliths useful to scientists during stock assessment, they help the fish with balance, movement and hearing.

Kacey Shaffer: That Is One BIG net! August 4, 2014

NOAA Teacher at Sea

Kacey Shaffer

Aboard NOAA Ship Oscar Dyson

July 26 – August 13, 2014

Mission: Walleye Pollock Survey

Geographical Location: Bering Sea

Date: August 4, 2014

Weather information from the Bridge:

Air Temperature: 11° C

Wind Speed: 8.95 knots

Wind Direction: 327°

Weather Conditions: Foggy

Latitude: 58° 59’92 N

Longitude: 176° 55’09 W

Science and Technology Log:

Now that we have chosen a location to fish, the real fun begins! With a flurry of action, the Bridge (control center of the ship) announces we are going to trawl (fish). This alerts the Deck Crew who has the responsibility of deploying a net. There are three different types of trawls, AWT (Aleutian Wing Trawl), 83-112 Bottom Trawl, and the Marinovich. The type of trawl chosen depends on the depth in the water column and proximity to the bottom of what we want to catch. The 83-112 Bottom Trawl pretty much does what it is called. It is drug along the bottom of the ocean floor and picks up all sorts of awesome sea creatures. The Marinovich is a smaller net that is trawled near the surface. For this Pollock survey, we have primarily used the AWT. It is a mid-water net and that is the area where Pollock primarily live.

Diagram of the Aleutian Wing Trawl (AWT).

Diagram of the Aleutian Wing Trawl (AWT).

As you can see in the diagram, the AWT is cone-shaped. When fully deployed it is 491 feet long! The opening of the net, similar to a mouth, is about 115 feet wide. The Chief Boatswain (pronounced bo-sun) controls the winches that let wire out which extends the opening of the net at least another 500 feet from the aft (rear) deck of the ship.

The ITI screen located on the Bridge that allows us to see how far behind the boat and at what depth the net is located.

The ITI screen located on the Bridge that allows us to see how far behind the boat and at what depth the net is located.

The Deck Crew begins to roll out the net and prepares it for deployment. There are several pieces of equipment attached along the way. A Camtrawl is attached first. Can you guess what it does? It is essentially a camera attached to the net that records what is being caught in the net. Near the Camtrawl, a pocket net is attached to the bottom side of the AWT. This pocket net can show scientists what, if any, fish are escaping the AWT. On a piece of net called the kite that is attached to the headrope (top of the mouth/opening), the FS70 and SBE are attached. The FS70 is a transducer that reports data to the Bridge showing the scientist what is coming into the net, similar to a fish finder. The SBE is bathythermograph that records water temperature and depth. Tomweights are added next. These heavy pieces of chain help weigh the footrope (bottom of the mouth/opening) down, pulling it deeper into the water. The net continues to be reeled out and is finally connected to lines on each side of the deck. The horizontal distance between the lines helps the net to fully open its mouth.

The Camtrawl lets us see fish as they enter the net.

The Camtrawl lets us see fish as they enter the net.

Attaching the tomweights as the net is deployed.

Attaching the tomweights as the net is deployed.

While the net is out the Bridge crew, the Chief Boatswain, the Survey Tech and at least one scientist are on the Bridge communicating. Each person has a role to ensure a successful catch. The Bridge crew controls the speed and direction of the boat. The Chief Boatswain controls the net; changing the distance it is deployed. The Survey Tech has information to report on one of the computers. Lastly, the scientist watches multiple screens, making the decision on how far out the net goes and when to haulback (brings the net in). Ultimately, the Bridge crew is the liaison between all of the other departments and has the final decision on each step of the process, keeping everyone’s safety in mind. This piece of the fishing puzzle quickly became my favorite part of the survey. It is so neat to listen to the chatter of all these groups coming together for one purpose.

On the Bridge during a trawl - left to right: Lt. Frydrych, Officer on Duty; Taina, Chief Scientist; Allen, Survey Tech; Chief Boatswain Kirk.

On the Bridge during a trawl – left to right: Lt. Frydrych, Officer of the Deck; Taina Honkalehto, Chief Scientist; Allen Smith, Survey Tech; Chief Boatswain Kirk Perry.

Once we have reached haulback the Chief Boatswain alerts his deck crew and they begin reeling the net back in. They watch to make sure the lines are going back on the reel evenly. When the tomweights come back on deck they are removed. The next items to arrive are the FS70 and SBE. They are removed and the reeling in continues. The Camtrawl comes in and is removed and the pocket net is checked for fish. By that point we are almost to the end of the net where we’ll find our catch. Because the net is very heavy, the deck crew uses a crane to lift it and move it over the table. A member of the Deck Crew pulls a rope and all the fish are released onto the table. The table is a piece of equipment that holds the fish on the deck but feeds them into the Wet Lab by conveyor belt. Once the fish have been removed from the net it is finally rolled up onto the reel and awaits its next deployment. In my next blog we’ll get fishy as we explore the Wet Lab!

Deck Crew members Bill (left) and Mike (right) prepare a full net to be hoisted to the table by the crane.

Deck Crew members Bill (left) and Mike (right) prepare a full net to be hoisted to the table by the crane.

 

Personal Log:

I have delayed writing about this next location on the ship because it is my favorite place and I want to make sure I do it justice. Plus, the Officers who stand watch on the Bridge are really awesome and I don’t want to disappoint them with my lack of understanding. Here are a few pictures showing some of the things I actually do understand…

Display of tanks located on board the Dyson.

Display of tanks located on board the Dyson.

This screen provides Officers with valuable information about the ship’s engine, among other things. This diagram shows multiple tanks located on the ship. Some tanks take in seawater as we use diesel fuel, drinking water, etc. to counter balance that usage and keep the Dyson in a state of equilibrium. Also, if they are expecting high seas they may take in some of the seawater to make our ship heavier, reducing the effects of the waves on the ship. I’ve been told this may be important in a couple of days because we’re expecting some “weather.” That makes me a little nervous!

The General Alarm on the Bridge.

The General Alarm on the Bridge.

The General Alarm is really important to the safety of all those on the ship but it is not my favorite thing every day at noon. The General Alarm is used to signal us in an emergency – Abandon Ship, Man Overboard, Fire, etc. It is tested every day at noon…while I’m sleeping!! “Attention on the Dyson, this is a test of the ship’s General Alarm.” BEEEP. “That concludes the test of the ship’s General Alarm. Please heed all further alarms.”

Officer Gilman updates a chart during his watch.

ENS Gilman updates a chart during his watch.

What would happen if all of our fancy technology failed on us? How would we know where to tell the Coast Guard to find us? NOAA Corps Officers maintain paper charts as a back up method. At the time this photo was taken the Officer was predicting our location in 30 minutes and in 60 minutes. This prediction is updated at regular intervals so that we have a general area to report in the case of an emergency. Officer Gilman completes this task during his shift.

Kacey learns how to steer the Dyson from Officer Ostapeko.

Kacey learns how to steer the Dyson from Lt. Ostapenko. (Photo Credit: ENS Gilman)

Have I mentioned that the NOAA Corps Officers onboard the Dyson are awesome? They’re so great they let me steer the boat for a little while! In the photo Lt. Ostapenko teaches me how to maintain the ship in a constant direction. The wheel is very sensitive and it took some time to adjust to amount of effort it takes to turn left or right. We’re talking fingertip pushes! The rudder is so large that even just a little push left or right can make a huge difference in the ships course.

Kacey records data on the Bridge during an AWT.

Kacey records data on the Bridge during an AWT. (Photo Credit: Darin)

Since beginning our survey I’ve only missed being on the Bridge for one trawl. Because I have paid very close attention during those trawls Scientist Darin is now allowing me to record some data. I am entering information about the net in this photo. Survey Tech Allen is making sure I do it correctly!

There are so many other things on the Bridge that deserve to be showcased. The ship can be controlled from any one of four locations. Besides the main control center at the front of the Bridge, there are control stations on either side of the ship, port and starboard, as well as the aft (rear). There is the radar system, too. It is necessary so the Officers can determine the location of other vessels and the direction they are traveling. As I’ve been told, their #1 job responsibility is to look out the windows and make sure we don’t run into anything. They are self-proclaimed nerds about safety and that makes me feel very safe!

Did you know? The NOAA Commissioned Officers Corps is one of the seven uniformed services of the United States. There are currently 321 commissioned officers.

Gregory Cook, Super Fish, August 2, 2014

NOAA Teacher at Sea

Gregory Cook

Aboard NOAA Ship Oscar Dyson

July 26 – August 13, 2014

Mission: Annual Walleye Pollock Survey

Geographical Area: Bering Sea

Date: August 2, 2014

Science and Technology Log 

See this guy here? He’s an Alaskan Pollock.

If fish thought sunglasses were cool, this fish would wear sunglasses.

Alaskan Pollock, aka Walleye Pollock.
Credit: http://www.noaanews.noaa.gov

“Whatever,” you shrug.
“Just a fish,” you scorn.
“He’s slimy and has fish for brains,” you mock.
Well, what if I told you that guy there was worth almost one billion dollars in exports alone?
What if I told you that thousands of fishermen rely on this guy to provide for their families?
What if I told you that they were the heart of the Sub-Arctic food web, and that dozens of species would be threatened if they were to disappear?
What if I told you they were all secretly trained ninja fish? Ninja fish that carry ninja swords strapped to their dorsal fins?
Then I’d only be wrong about one thing.


Taina Honkalehto is the Chief Scientist onboard the Oscar Dyson. She has been studying Pollock for the last 22 years. I asked her what was so important about the fish.

“They’re the largest single species fishery in North America,” Taina says. That makes them top dog…err… fish… in the U.S. fishing industry.

Chief Scientist Taina Honkalehto decides where to fish based on data.

Chief Scientist Taina Honkalehto decides where to fish based on data.

“In the U.S. they are fish sticks and fish-wiches (like Filet-o-Fish from McDonalds). They’ve become, foodwise, what Cod used to be… inexpensive, whitefish protein,” Taina continues. They’re also the center of the sub-arctic food web. Seals, walruses, orca, sea lions, and lots of larger fish species rely on Pollock as an energy source.”
But they aren’t just important for America. Pollock plays an important role in the lives of people from all over the Pacific Rim. (Remember that the Pacific Rim is made up of all the countries that surround the Pacific Ocean… from the U.S. and Canada to Japan to Australia to Chile!)

Pollock Need Love, too!

Pollock Need Love, too!

“Pollock provide a lot of important fish products to many countries, including the U.S., Japan, China, Korea, and Russia,” Honkalehto says.

Making sure we protect Pollock is REALLY important. To know what can go wrong, we only have to look at the Atlantic Cod, the fish that Cape Cod was named after. In the last twenty years, the number of Atlantic Cod has shrunk dramatically. It’s cost a lot of fishermen their jobs and created stress in a number of families throughout New England as well as tensions between the U.S. and Canada. The U.S. and Canada share fish populations.

The primary job of the Oscar Dyson is to sample the Pollock population. Government officials use the results to tell fishermen what their quota should be. A quota is a limit on the number of fish you can catch. The way we gather that data, though, can be a little gross.

The Aleutian Wing Trawl (or AWT)

Fishermen Deploy the AWT

Fishermen Deploy the AWT.

The fishermen guide the massive Aleutian Wing Trawl (or AWT) onto the deck of the ship. The AWT is a 150 meters long net (over one and a half football fields in length) that is shaped like an ice cream cone. The net gets more and more narrow until you get all the way down to the pointy tip. This is known as the “cod end,” and it’s where most of the fish end up. Here’s a diagram that XO (Executive Officer) Kris Mackie was kind enough to find for me.

AWT

The Aleutian Wing Trawl (or AWT). over one and a half football fields worth of Pollock-Snatching Power.

The AWT is then hooked onto a crane which empties it on a giant mechanical table. The table has a hydraulic lift that lets us dump fish into the wet lab.

Allen pulls a cod from the Table

Survey Technician Allen pulls a cod from the Table

Kids, whenever you hear the term “wet lab,” I don’t want you to think of a water park. Wet lab is going to mean guts. Guts and fish parts.

In the wet lab, the contents of the net spills onto a conveyer belt… sort of like what you see at Shaw’s or Market Basket. First we sift through the Pollock and pull any odd things… jellyfish, skates, etc… and set them aside for measurement. Then it’s time to find out what sex the Pollock are.

Survey Technician Alyssa and Oceanographer Nate pull a giant jellyfish out of a pile of pollock!

Survey Technician Alyssa and Oceanographer Nate pull a giant jellyfish out of a pile of pollock!

Genitals on the Inside!

Pollock go through external fertilization (EF). That means that the female lays eggs, and the males come along and fertilize them with their sperm. Because of that, there’s no need for the outside part of the sex organs to look any different. In science, we often say that form follows function. In EF, there’s very little function needed other than a hole for the sperm or egg cells to leave the body.

Because of that, the only way to tell if a Pollock is male or female is to cut them open and look for ovaries and testes. This is a four step process.

Ladies before Gentlemen: The female Pollock (in the front) has ovaries that look like two orange lobes. The Male (in the back) has structures that make him look like he ate Ramen noodles for dinner.

Ladies before Gentlemen:
The female Pollock (bottom) has ovaries that look like two orange lobes. The Male (itop) has testes that make him look like he ate Ramen noodles for dinner.

Step 1: Slice open the belly of the fish.

Step 2: Push the pink, flippy floppy liver aside.

Step 3: Look for a pair of lobes (a bag like organ) that is either purple, pink, or orange-ish. These are the ovaries! If you find this, you’ve got a female.

Step 4: If you strike out on step 3, look for a thin black line that runs behind the stomach. These are the testes… As Tom Hanks and Meg Ryan might say, you’ve got male.

Then the gender and length of the fish is then recorded using CLAMS… a software program that NOAA computer scientists developed for just this purpose. With NOAA, like any good science program, it’s all about attention to detail. These folks take their data very seriously, because they know that so many people depend on them to keep the fish population safe.

Personal Blog

Safety!

Lobster Gumby

Your teacher in an Immersion Suit. Sailors can survive for long periods of time in harsh environments in these outfits.

.

On the first day aboard the Oscar Dyson, we were trained on all matters of safety. Safety on a ship is often driven by sirens sounded by the bridge. Here’s a list of calls, what they mean, and what you should do when you hear them:

What you hear… What it means… What you should do…
 Three long blasts of the alarm: Man Over Board Report to safety station, be counted, and report in to the bridge (unless you’re the one that saw the person go overboard… then you throw them life rings (floaties) and keep pointing at them).
 One long blast of general alarm or ship’s whistle: Fire or Emergency onboard Report to safety station, be counted, and report in to the bridge. Bring Immersion Suit just in case.
 Six or more short blasts then one long blast of the alarm: Abandon Ship Grab your immersion suit, head to the aft (back) deck of the ship, be counted, and prepare to board a life raft.

 

The immersion suit (the thing that makes me look like lobster gumby, above) is made of thick red neoprene. It has two flashing lights also known as beacons…  one of them automatically turns on when it hits water! This helps rescuers find you in case you’re lost in the dark. It also has an inflatable pillow behind your head to help keep your head above water. Mostly just wanted to wear it to Starbucks some day.

Food!

Another thing I can tell you about life aboard the Oscar Dyson is that there is plenty to eat!

kind of awesome. For one thing, there is a never ending supply of food in the galley (the ship’s cafeteria). Eva is the Chief Steward on the Oscar Dyson (though I call her the Head Chef!).

Chief Steward Eva gets dinner done right!

Chief Steward Eva gets dinner done right!

You’ll never go hungry on her ship. Dinner last night? barbeque ribs and mac and cheese. Yesterday’s lunch? Steak and chicken fajitas. And this morning? Breakfast burritos with ham and fruit. I know. You were worried that if I lost any weight at sea that I might just disappear. I can confirm for you that this is absolutely not going to happen.

Tune in next time when I take you on a tech tour of the Oscar Dyson!

 

Kacey Shaffer: Here We Go! July 27, 2014

NOAA Teacher at Sea

Kacey Shaffer

Aboard NOAA Ship Oscar Dyson

July 26 – August 13, 2014

 

Mission: Walleye Pollock Survey

Geographical Location: Bering Sea

Date: July 27, 2014

 

Weather information from the Bridge:

Air Temperature: 9º C

Wind Speed: 10 knots

Wind Direction: 350º

Weather Conditions: Overcast

Latitude: 56º 29.3 N

Longitude: 170º 35.0 W

 

Science and Technology Log:

Before we get into detail about the mission, let’s think about the Oscar Dyson’s geographical location. It is important for us to understand this background knowledge so that we may appreciate the scientific research conducted by NOAA. Most of you have gathered that I am aboard the Dyson somewhere off the coast of Alaska. Our survey began and will end at port in Dutch Harbor, Alaska. Where is Dutch Harbor? Let’s take a look at a map…

Map of Alaska and Bering Sea

Map of Alaska and Bering Sea

Dutch Harbor is on the island of Unalaska in the Aleutian Islands.  We will take a scientific look at the Aleutian Islands before we learn about the Bering Sea. The Aleutian Islands separate the Bering Sea from the Pacific Ocean. How did this chain of islands come to be? Continental drift and volcanoes! The Pacific Plate moves northward and has been pushing against the North American Plate, which moves southward, for millions of years. The North American Plate is much less dense than the Pacific Plate and has been riding up onto the Pacific Plate. Here is an image that shows this action.

The Pacific Plate is shown on the left and the North American Plate is shown on the right. The volcanoes and mountains represent the Aleutian Islands.

The Pacific Plate is shown on the left and the North American Plate is shown on the right. The volcanoes and mountains represent the Aleutian Islands.

As you can see in the diagram, the Aleutian Islands are formed by volcanic eruptions along the area where these two plates collide. As I read in the book The Bering Sea and Aleutian Islands: Region of Wonders, “During an eruption, lava, cinders, and ash burst through the earth’s surface at points of weakness in the globe’s mantle, caused by the collision of the plates, and each volcano leaves a telltale conical peak. Many of those eruptions have occurred below the surface of the sea, and only the tops of the mountains poke out of the water, making up many of the Aleutian Islands.” This is how the island of Unalaska came to be, thus Dutch Harbor was established!

Now we need to investigate the Bering Sea. What are some words we use to describe the Bering Sea? Cold, stormy, bleak, productive. If you have ever watched an episode of the Discovery Channel’s The Deadliest Catch, you’ve been given a peek at the “cold, stormy and bleak” aspect of the Bering Sea.

What about the “productive” side of this great sea? Three facts: 1. Alaska supplies about half of the total U.S. fishery. 2. The majority of this contribution comes from the Bering Sea. 3. The nation’s largest fishery is the Pollock fishery. NOAA has estimated that the 2012 Pollock catch value is more than $343 billion. Are you beginning to understand how valuable the Bering Sea is to our world?

In order to maintain or increase the value of the sea, management practices must be in place. The North Pacific Fishery Management Council provides advice to NOAA Fisheries. Also, NOAA conducts research cruises in the Bering Sea perform biological and physical surveys to ensure sustainable fisheries and healthy marine habitats. This is the ultimate purpose of the survey I’m joining. We are performing the third leg of the biannual Walleye Pollock Survey in the Bering Sea. In my upcoming blogs, we’ll dive into the technical aspects of the survey. Are you ready to see some sea life? I definitely can’t wait to get my hands on some critters! Prepare for sea selfies!

Personal Log:

As I type my blog, I’m sitting on the deck at a picnic table with the cool, crisp air blowing by. We are in transit to our first survey location. We got underway yesterday afternoon and I won’t see land again for many, many days. That is both exciting and scary at the same time! How do you think you’d feel knowing you are miles away from land? Would you worry about your safety? I am fully confident in the crew of the Oscar Dyson. They have been a great group of people to get to know and I’m sure they will take great care of everyone on board the cruise.

Backing up a couple of days, I want to share with you about my journey across North America and my first two days with the Dyson. After taking off from Columbus I made stops in Minneapolis and Anchorage before landing at the airport in Dutch Harbor. All three flights were smooth and I was thankful for a very calm landing in Dutch. The airport there is a real treat! Our pilot had everything under control though. From the airport we came straight to the ship. I was shown to my room and then we took off for supper at The Grand Aleutian Inn’s dining room. I was able to see a few bald eagles that night and we also took a scenic cruise around the two towns, Dutch Harbor and Unalaska. The next morning the other Teacher at Sea, Greg, and I hitched a ride to the Museum of the Aleutians. It was a great place to learn about the history of the Aleutian Islands. We also made stops at Alaska Ship Supply and Safeway. We had to make sure we were stocked up with the essentials (soda and some candy) to get us through the next three weeks!

Exhibit at the Museum of the Aleutians

Exhibit at the Museum of the Aleutians

Our departure from Dutch Harbor was a beautiful one. Many of the crew members commented on what a beautiful day we were having and how extraordinarily warm it was. The deck crew allowed me to stand on one of the front decks to watch the process of undocking and cruising out of the harbor. They wasted no time as we had our first three drills right away. I’m going to save myself some embarrassment and not share the photo of me donning the survival suit. Let’s just say I’m a little too short for it! Later on that evening we received a call in the lounge that the bridge crew was spotting some whales just west of the ship. I was able to reach the bridge just in time to see a few humpback whales breeching and a few dolphins playing in front of us. That short experience made me really look forward to sorting our first catch. What is one critter from the sea you would like to see in person?

 

Did you know?

There are nearly 40 active volcanoes that mark the line where the Pacific Plate and North American Plate meet.

Kacey Shaffer: Preparing for an Adventure, July 16, 2014

NOAA Teacher at Sea

Kacey Shaffer

(Almost) Aboard NOAA Ship Oscar Dyson

July 26 – August 13, 2014

Mission: Annual Walleye Pollock Survey

Geographical Area: Bering Sea

Date: July 16, 2014

Hello from beautiful Southern Ohio! My name is Kacey Shaffer and it is an honor to be an NOAA Teacher at Sea for the 2014 Field Season. I am thrilled to be sharing this once-in-a-lifetime opportunity with you. In a few days I’ll be flying across North America to spend nineteen days aboard the NOAA ship Oscar Dyson. Our mission will be to assess the abundance and distribution of Walleye Pollock along the Bering Sea shelf.

Next month I’ll begin my eighth year as an Intervention Specialist at Logan Elm High School in Circleville, Ohio. I teach Biology and Physical Science resource room classes and also co-teach in a Biology 101 class and Physical Science 101 class. Three summers ago I was able to participate in Honeywell’s Educators at Space Academy, held at the U.S. Space and Rocket Center in Huntsville, Alabama. That experience enabled me to bring a wealth of information and activities back to my students and colleagues. Because I had such a wonderful experience at Space Academy, I knew I would soon be seeking out other opportunities to perform hands-on work and gain knowledge not available in my geographic area. I was very excited when I found the NOAA Teacher at Sea program and applied immediately. When the congratulatory email arrived I acted like a little girl on Christmas morning, jumping up and down and squealing!

For our first team mission, I served as CapCom. I was the communication link between Mission Control and the shuttle.

In 2011, I attended Honeywell’s Educators at Space Academy. For our first team mission, I served as CapCom. I was the communication link between Mission Control and the shuttle. (Photo credit: Lynn of Team Unity)

Not only do I love adventure that is related to my teaching career, I love adventure in general! Two summers ago I had the privilege of joining one of Logan Elm’s Spanish teachers and four of her recent Spanish 4 graduates on a nine day tour of Spain. We were immersed in culture and history in several cities from Madrid to Barcelona. It was a wonderful experience and I really hope to travel abroad again. Last month the same Spanish teacher escorted four more recent graduates to Puerto Rico for a five day stay. Thankfully she felt I had behaved well enough in Spain to be invited on this trip! Our trip to Puerto Rico was very different from our travel in Spain. We were able to go ziplining in La Marquesa, hiking in El Yunque (which happens to be the U.S. National Park Service’s only tropical rain forest), and kayaking in Laguna Grande near Fajardo. The most amazing experience was kayaking at night in Laguna Grande. Why would you kayak at night? Because that is the home of a bioluminescent bay! You can learn more about this ocean phenomena here. I am very thankful to be able to travel as much as I do!

Last month I kayaked in a bioluminescent bay near Fajardo, Puerto Rico. I shared a kayak with my friend Megan, right.

Last month I kayaked in a bioluminescent bay near Fajardo, Puerto Rico. I shared a kayak with my friend Megan, right. (Photo credit: Luiz, our tour guide)

If I were driving to the Oscar Dyson, it would be about a 5,000 mile trip one way! I’m really glad the journey will be via airplane. I’ll be meeting the ship in Dutch Harbor, Alaska. Does that name sound familiar? Dutch Harbor is the home base of the Discovery Channel’s “The Deadliest Catch.” It is a very small town on one of the many islands that are collectively called the Aleutian Islands. From Dutch Harbor we will sail into the Bering Sea and begin our work. From the information I’ve read, we’ll spend our days gathering information about Walleye Pollock. Through my preparations I’ve gathered this is important because Walleye Pollock is one of the largest fisheries in the world. Why would Walleye Pollock be important to me or my students? This fish is often used in imitation crab or fried fish fillets. We could be eating this species the next time we have fish sticks for supper! For greater detail on Alaskan Walleye Pollock check out the NOAA’s FishWatch page here.

pollock

This is a basket of pollock from a previous survey. (Photo courtesy of NOAA files)

Goodbye Oscar Dyson!

See you in Dutch Harbor, Oscar Dyson! (Photo courtesy of NOAA files)

 

The next time I write to you I’ll be aboard the mighty Oscar Dyson. In the mean time I’ll continue to gather warm clothes and search for a box of seasickness medicine. As I’m packing I may need some advice. If you were leaving home for three weeks, what is the one item you wouldn’t leave without? Remember, I’ll be at sea. My cell phone will be rendered useless and my access to the internet will be limited.