Kacey Shaffer: Preparing for an Adventure, July 16, 2014

NOAA Teacher at Sea

Kacey Shaffer

(Almost) Aboard the Oscar Dyson

July 26 – August 13, 2014

Mission: Annual Walleye Pollock Survey

Geographical Area: Bering Sea

Date: July 16, 2014

Hello from beautiful Southern Ohio! My name is Kacey Shaffer and it is an honor to be an NOAA Teacher at Sea for the 2014 Field Season. I am thrilled to be sharing this once-in-a-lifetime opportunity with you. In a few days I’ll be flying across North America to spend nineteen days aboard the NOAA ship Oscar Dyson. Our mission will be to assess the abundance and distribution of Walleye Pollock along the Bering Sea shelf.

Next month I’ll begin my eighth year as an Intervention Specialist at Logan Elm High School in Circleville, Ohio. I teach Biology and Physical Science resource room classes and also co-teach in a Biology 101 class and Physical Science 101 class. Three summers ago I was able to participate in Honeywell’s Educators at Space Academy, held at the U.S. Space and Rocket Center in Huntsville, Alabama. That experience enabled me to bring a wealth of information and activities back to my students and colleagues. Because I had such a wonderful experience at Space Academy, I knew I would soon be seeking out other opportunities to perform hands-on work and gain knowledge not available in my geographic area. I was very excited when I found the NOAA Teacher at Sea program and applied immediately. When the congratulatory email arrived I acted like a little girl on Christmas morning, jumping up and down and squealing!

For our first team mission, I served as CapCom. I was the communication link between Mission Control and the shuttle.

In 2011, I attended Honeywell’s Educators at Space Academy. For our first team mission, I served as CapCom. I was the communication link between Mission Control and the shuttle. (Photo credit: Lynn of Team Unity)

Not only do I love adventure that is related to my teaching career, I love adventure in general! Two summers ago I had the privilege of joining one of Logan Elm’s Spanish teachers and four of her recent Spanish 4 graduates on a nine day tour of Spain. We were immersed in culture and history in several cities from Madrid to Barcelona. It was a wonderful experience and I really hope to travel abroad again. Last month the same Spanish teacher escorted four more recent graduates to Puerto Rico for a five day stay. Thankfully she felt I had behaved well enough in Spain to be invited on this trip! Our trip to Puerto Rico was very different from our travel in Spain. We were able to go ziplining in La Marquesa, hiking in El Yunque (which happens to be the U.S. National Park Service’s only tropical rain forest), and kayaking in Laguna Grande near Fajardo. The most amazing experience was kayaking at night in Laguna Grande. Why would you kayak at night? Because that is the home of a bioluminescent bay! You can learn more about this ocean phenomena here. I am very thankful to be able to travel as much as I do!

Last month I kayaked in a bioluminescent bay near Fajardo, Puerto Rico. I shared a kayak with my friend Megan, right.

Last month I kayaked in a bioluminescent bay near Fajardo, Puerto Rico. I shared a kayak with my friend Megan, right. (Photo credit: Luiz, our tour guide)

If I were driving to the Oscar Dyson, it would be about a 5,000 mile trip one way! I’m really glad the journey will be via airplane. I’ll be meeting the ship in Dutch Harbor, Alaska. Does that name sound familiar? Dutch Harbor is the home base of the Discovery Channel’s “The Deadliest Catch.” It is a very small town on one of the many islands that are collectively called the Aleutian Islands. From Dutch Harbor we will sail into the Bering Sea and begin our work. From the information I’ve read, we’ll spend our days gathering information about Walleye Pollock. Through my preparations I’ve gathered this is important because Walleye Pollock is one of the largest fisheries in the world. Why would Walleye Pollock be important to me or my students? This fish is often used in imitation crab or fried fish fillets. We could be eating this species the next time we have fish sticks for supper! For greater detail on Alaskan Walleye Pollock check out the NOAA’s FishWatch page here.

pollock

This is a basket of pollock from a previous survey. (Photo courtesy of NOAA files)

Goodbye Oscar Dyson!

See you in Dutch Harbor, Oscar Dyson! (Photo courtesy of NOAA files)

 

The next time I write to you I’ll be aboard the mighty Oscar Dyson. In the mean time I’ll continue to gather warm clothes and search for a box of seasickness medicine. As I’m packing I may need some advice. If you were leaving home for three weeks, what is the one item you wouldn’t leave without? Remember, I’ll be at sea. My cell phone will be rendered useless and my access to the internet will be limited.

 

Mary Murrian, Working at Sea on the Oscar Dyson!, July 11, 2014

NOAA Teacher at Sea

Mary Murrian

Aboard NOAA Ship, Oscar Dyson

July 4- 22, 2014

Mission: Annual Walleye Pollock Survey

Geographical Area of Cruise: Bering Sea North of Dutch Harbor

Date: Friday, July 11, 2014

Weather Data fro the Bridge:

Wind Speed: 17.02 kt

Air Temperature: 8.9 degrees Celsius

Barometric Pressure: 1004.3

Latitude: 5903.6745 N

Longitude: 17220..4880 W

noaa iphone pictures july 5 and 6 2014 1109

I’m sorting the jellyfish (Chrysaora Melanaster) from the pollock.

Science log:

I participated in my first live trawl, catch, sort and data collection survey. In my last blog, I talked about how we located and caught the pollock.  This blog will talk about what happens when the fish are unloaded into the wet lab and processed.  A wet lab is a science lab that is capable of handling excess water and houses the equipment need to to process the catch.

Fresh catch proceeding down the conveyor belt. Time to sort.

Fresh catch proceeding down the conveyor belt. Time to sort.

Once the crew off loads the fish, from the net to the short conveyor belt, into the wet lab or sometimes called the slime lab, (it really lives up to its name), I help the scientists sort the pollock from the other species caught in the net. A small sample of marine life, that is not a pollock, gets sorted, weighed and measured for data collection purposes. They are not the main target of our survey, however, they are interesting to see. Large quantities of jellyfish usually make the mix, but I have seen a variety of other animals, such as crabs, starfishes, clams, salmon, flatfishes, Pacific herring, Atka mackerel, and Yellow Irish Lord. The main character, the pollock, are weighed in batches and then placed on a small table to be sexed. In order to sex the fish, I had to cut across the side of the fish with a small scalpel. Next, I inserted my fingers into their guts and pulled out either the gonads (male) or ovaries (female). The gonads look like stringy romaine noodles and the ovaries look like whitish-pinkish oval sacs. Female pollock are placed in a bin labeled sheila’s and the male pollocks are placed in a bin labeled blokes. Sheila’s and blokes are Australian terms for female and male. Cute.

A female pollock full of eggs

A female pollock full of eggs

Sexing the pollock.  This one is a female.  You can see it oval shaped ovaries.

Sexing the pollock. This one is a female. You can see it oval shaped ovaries.

Once sexed and sorted, the fish are measured for their length. Two very ingenious scientists (one who is working on my trip, Kresimir Williams, and Rick Towler), invented an electronic measuring device. The device allows us to measure quickly and accurately while at the same time automatically recording the measurement on the computer. It looks like a cutting board with a ruler embedded in the center. Of course, all measurements used are metric, the primary form of measurement for scientists across the world.  I to place the fish’s mouth at the beginning of the board and line the back tail of the fish along the ruler. Next, a special tool (a stylus) embedded with a magnet (it’s small, white,and the front looks like a plastic arrowhead) is placed arrow side forward on the end of the tail fin. Once the tool touches the board (it makes a noise which sounds similar to “ta-da” to let you know it captured its measurement), it automatically records the length in the data program, on the computer. I wish I had one for my classroom. Oh, the fun my students could have measuring!  The device streamlines the data collecting process allowing scientists more precise data collection and more time for other research.

I’m measuring the pollock on the electronic scale called the Ichthy Stick

That was a lot to absorb, but there is more. If you tend to get squeamish, you might want to scroll past the next paragraph.

Although, I did not work hands on with the next data collection, I closely observed and took pictures. I will try it before my trip ends. The next step is the aging process. Aging a pollock is a vital part of determining the health and welfare of the species. Aging a pollock is similar to the method of aging a tree.  The Russian scientist, Dr. Mikhail Stepanenko, who has been surveying pollock for over twenty years and is part of the NOAA science team, has it down to a science. First, he cuts the pollock’s head off exposing the ear bones called Otoliths (Oto–means ear; liths–means stone).  He removes the tiny ear bones (about the size and shape of a piece of a navy bean), rinses them, and places them in a small vial labeled with a serial-numbered bar code. The bar code gets scanned and the code is assigned to the specific fish in the computer data base, which also includes their sex, weight and length. Once back at the lab, located in Seattle, Washington, the otoliths can be observed under a microscope and aged based on the number of rings they have: pollock otoliths have one ring for every year of age.  Only twenty fish from each trawl have their otoliths extracted.

Looking inside the pollock.  The little white bones are the ear bones or otoliths.

Looking inside the pollock. The little white bones are the ear bones or otoliths.

Dr. Mikhail Stepanenko placing the otoliths (ear bones) in the vial to be sent to the lab.

Dr. Mikhail Stepanenko placing the otoliths (ear bones) in the vial to be sent to the lab.

Mikhail Stepanenko or we call him Meesha

Mikhail Stepanenko or we call him Meesha

Once all data are collected, there is still more work to be completed. All of the fish that we sampled, were thrown back into the ocean for the sea birds and other carnivores (meat-eaters) to enjoy. Who wouldn’t enjoy a free meal? Then the equipment and work space must be sprayed down to get rid of all the fish particles (slime). It’s important to clean up after yourself to ensure a safe and healthy environment for everyone. Besides, the smell would be horrible.  I also had to spray myself down, it gets very messy.  I had fish guts and jellyfish slime all over my lab gear (orange outer wear provided by NOAA). Unfortunately, the guts occasionally get splattered on my face and hair!  Yuck, talking about fish face.  Thankfully, a bathroom is nearby, where I can get cleaned up.

Starfish that fell from the net when being towed back on board.

Starfish that fell from the net when being towed back on board.

Part of the snail family

Whelks (snails) and anemones

When all is clean, the scientists can upload and analyze the data. They will compare the data to past and current surveys. The data is a vital step to determining the health and abundance of pollock in our ecosystem. I am amazed at all the science, math, engineering, and technology that goes on during a fish survey. It takes many people and numerous skills to make the survey successful.

Brittle Sea Star

This is one of many experiences, I have had trawling and collecting data at sea aboard the Oscar Dyson.  The process will repeat several times over my three week trip.  As part of the science crew, I am responsible to help with all trawls during my shift.  I could have multiple experiences in one day.  I cannot wait!

Personal Log:

What’s it like to be on a NOAA ship out at sea? 

The deck hands, NOAA Corps, and the people I work closest with, the science team are wonderful and welcoming. I’m super excited and I have to restrain myself from overdoing my questions. They have a job to do!

The weather is not what I expected.  It is usually foggy, overcast, and in the high 40′s and low 50′s.  Once in a while the sun tries to peek out through the clouds. The Bering Sea has been relatively calm. The heaviest article of clothing I wear is a sweatshirt.  It is still early, anything can happen.

On my first day at sea, we had a fire drill and an evacuation drill. Thankfully, I passed.  With help from Carwyn, I practiced donning (putting on) my survival suit.  I displayed a picture of me wearing it in my last blog.  It makes for a hilarious picture!   All kidding aside, NOAA takes safety seriously. The survival suit will keep me alive for several days in case of an evacuation in the middle of sea until someone can rescue me. It will protect me from the elements like water temperature, heat from sun, and it has a flashlight attached. Hopefully, I will not have to go through the experience of needing the suit; but I feel safer knowing it is available.

Carwyn Hammond

Besides the people, the best amenity aboard the Oscar Dyson is the food. Food is available around the clock. That is important because we work 12 hour shifts from 4:00 to 4:00. That means I work the morning 12-hour shift and my roommate, Emily Collins, works the night 12-hour shift. Hungry workers are grumpy workers. For breakfast, you can get your eggs cooked to order and choose from a variety of traditional breakfast food: French toast, grits, cereal, bacon, sausage, fresh fruit, etc…Hot meal options are served for lunch and dinner including a delicious dessert . Of course, ice cream is available always!  I hope I can at least maintain my weight while aboard.

The Galley

The Galley

Food Bar

Food Bar

If I get the urge, there is workout equipment including cardio machines and weights available to use. Other entertainment includes movies and playing games with the other crew members.  The Oscar Dyson also has a store where I can purchase sweatshirts, sweatpants, t-shirts, hats, and other miscellaneous souvenirs advertising the name of the ship. Who would have thought you could shop aboard a NOAA fishing vessel?  I am definitely going shopping.  One of my favorite things to do aboard the ship is to watch for marine life on the bridge, it is peaceful and relaxing.  For anyone that does not know, the bridge is where the Chief Commanding Officer, Chief Executive Officer, and crew navigate the ship.  It is the highest point in which to stand and watch safely out at sea and in my opinion, it has the best view on board.

Did you know?

Did you know when a marine animal such as a seal is close by during a trawl, the trawl process stops and is rerouted?   

The crew is very respectful of sea life and endeavors to complete their mission with the least negative impact on wildlife.  Also, while the ship is on its regular course, the officers on the bridge, sometimes with a deck hand who is available, keep an eye out for seals, sea lions, whales, and sharks, in order to maneuver around them and keep them safe.

NOAA Corps LT Greg Schweitzer, Executive Officer or XO

NOAA Corps LT Greg Schweitzer, Executive Officer or XO

NOAA Corps Ensign Ben VanDine, Safety Officer

NOAA Corps Ensign Ben VanDine, Safety Officer

 

Did you know you can track the Oscar Dyson and its current location?

Check out this link: http://shiptracker.noaa.gov/

Make sure you find the Bering Sea and click on the yellow dot; it will tell you our coordinates!

 

Meet the Scientist:  Emily Collins

Emily holding a Yellow Irish Lord

Title: Fisheries Observer (4 years)

Education:  Bachelor’s Degree in Biology, Marine Science, Boston University

Job Responsibilities: As an observer, Emily works aboard numerous fishing vessels, including the Oscar Dyson.  She collects data to find out what is being caught so that we can send the information to NMFS (National Marine Fisheries Services), a division of NOAA.  They use the data she collects to complete a stock assessment about what type of fish are caught and how much.  She is helping, as part of the science team, survey the pollock for all three legs of the survey.  When I get back to port, she has a couple of days to rest up in Dutch Harbor and then she will complete the last leg of the trip.

Living Quarters:  As a full-time observer, her home is wherever the next assignment is located, mostly on the Bering Sea and the Gulf of Alaska.  She is from Dundee, New York, where her family currently resides.

What is cool about her work?

She loves working at sea  and working with the marine life.  She especially loves it when the nets catch a species of fish she has not seen before.  Getting to know new people and traveling is also a plus.

The weirdest and definitely not her favorite experience, while working on a smaller fisheries boats, was having to use a bucket for the toilet.

Emily had a wonderful opportunity her senior year in high school, the chance to go on a National Geographic Expedition with her mom and then later while in college while taking classes abroad. She went to the Galapagos Islands and Ecuador to study marine biology. These experiences and the fact that her mother is a veterinarian exposed Emily to the love of animals the ocean, and her career choice.

 

Nate is holding a snow crab.

A flat fish

Rock Sole (a type of flatfish)

 

Lots of crabs!

Lots of crabs!

Sorting through the bottom trawl

Sorting through the bottom trawl

Korean Horsehair Crab

Kresimir Williams holding a crab

Kresimir Williams holding a crab

Alex De Robertis working in the wet lab.

Alex De Robertis working in the wet lab.

Mary Murrian, My First Days in Dutch Harbor, July 6, 2014

NOAA Teacher at Sea Mary Murrian

Aboard NOAA Ship Oscar Dyson

July 4- 22, 2014

Mission: Annual Walleye Pollock Survey

Geographical Area of Cruise: Bering Sea North of Dutch Harbor

Date: Sunday, July 6th, 2014

Weather Data from the Bridge:

Wind Speed: 6 kts

Air Temperature: 8.6 degrees Celsius

Weather conditions: Hazy

Barometric Pressure: 1009.9

Latitude: 5923.6198  N

Longitude: 17030.6395  W

 

Science and Technology Log

Part One of the Survey Trawl: Getting Ready to Fish

This is a picture of a pollock from our first trawl.

This is a picture of a pollock from our first trawl.

Today is my second day aboard the Oscar Dyson.  We are anxiously waiting for the echosounder (more information on echosounder follows) to send us a visual indication that a large abundance of fish is ready to be caught.  The point of the survey is to measure the abundance of Walleye Pollock throughout specific regions in the Bering Sea and manage the fisheries that harvest these fish for commercial use to process and sell across the world.  The Walleye Pollock are one of the largest populations of fish.  It is important to manage their populations due to over-fishing could cause a substantial decrease the species.  This would be detrimental to our ecosystem.  The food web [interconnecting food chains; i.e. Sun, plants or producers (algae), primary consumers, animals that eat plants (zooplankton), secondary consumers, animals that eat other animals (pollock), and decomposers, plants or animals that break down dead matter (bacteria)] could be altered and would cause a negative effect on other producers and consumers that depend on the pollock for food or maintain their population.

The main food source for young pollock is copepods, a very small marine animal (it looks like a grain of rice with handle bars).  They also eat zooplankton (animals in the plankton), crustaceans, and other bottom dwelling sea life.  On the weird side of the species, adult pollock are known to eat smaller pollock.  That’s right, they eat each other, otherwise known as cannibalism.  Pollock is one of the main food sources for young fur seal pups and other marine life in Alaskan waters.  Without the pollock, the food web would be greatly altered and not in a positive way.

How do we track the pollock?

Pollock

Pollock

Tracking begins in the acoustics lab.  Acoustics is the branch of science concerned with the properties of sound.  The acoustics lab on board the Oscar Dyson, is the main work room where scientists can monitor life in the ocean using an echosounder which measures how many fish there are with sound to track the walleye pollock’s location in the ocean.  They also use the ships’s GPS (Global Positioning System), a navigation system, to track the location of the NOAA vessel and trawl path.

Echo Sounder

Sonar Screen

What is sonar and how does it work? 

Sonar (sound ranging & navigation;  it’s a product of World War II) allows scientists to “see” things in the ocean using sound by measuring the amount of sound bouncing off of objects in the water.  On this survey, sonar images are displayed as colors on several computer monitors, which are used to see when fish are present and their abundance.  Strong echoes show up as red, and weak echoes are shown as white.  The greater the amount of sound reported by the sonar as red signals, the greater the amount of fish.

Echo Sonar Screen Showing the patterns of echos from the ocean.

Echo Sonar Screen Showing the patterns of echos from the ocean.

How does it work?  There is a piece of equipment attached to the bottom of the ship called the echosounder.  It sends pings (sound pulses) to the bottom of the ocean and measures how much sound bounces back to track possible fish locations.   The echo from the ocean floor shows up as a very strong red signal.   When echoes appear before the sound hits the ocean floor, this represents the ping colliding with an object in the water such as a fish.

The scientists monitor the echosounder signal so they can convey to the ships’s bridge and commanding officer to release the nets so that they can identify the animals reflecting the sound.  The net catches anything in its path such as jellyfish, star fish, crabs, snails, clams, and a variety of other fish species. Years of experience allows the NOAA scientists the ability to distinguish between the colors represented on the computer monitor and determine which markings represent pollock versus krill or other sea life.  We also measure the echoes at different frequencies and can tell whether we have located fish such as pollock, or smaller aquatic life (zooplankton). The red color shown on the sonar screen is also an indicator of pollock, which form dense schools.  The greater amount of red color shown on the sonar monitor, the better opportunity to we have to catch a larger sample of pollock.

The Science Team Wonderful group of people.

Once we have located the pollock and the net is ready, it is time to fish.  It is not as easy as you think, although the deck hands and surveyors make it look simple.  In order to survey the pollock, we have to trawl the ocean.  Depending on the sonar location of the pollock, the trawl can gather fish from the bottom of floor, middle level and/or surface of the ocean covering preplanned locations or coordinates. Note: Not all the fish caught are pollock.

The preplanned survey path is called transect lines with head due north for a certain distance. When the path turns at a 90 degree angle west (called cross-transect lines) and turns around another 90 degree angle heading back south again.  This is repeated numerous times over the course of each leg in order to cover a greater area of the ocean floor.  In my case we are navigating the Bering Sea.  My voyage, on the Oscar Dyson is actually the second leg of the survey, in which, scientists are trawling for walleye pollock.  There are a total of three legs planned covering a distance of approximately 6,200nmi (nautical miles, that is).

Trawling is where we release a large net into the sea located on the stern (the back of the boat).  Trawling is similar to herding sheep.  The fish swim into the net as the boat continues to move forward, eventually moving to the smaller end of the net.  Once the sonar screen (located on a computer monitor) shows that we have collected a large enough sample of pollock, the deck hands reel the net back on board the boat.

 

The crew are beginning to release the trawl net.

The crew are beginning to release the trawl net.

This is the stern of the boat where the trawl net gets released into the ocean.

This is the stern of the boat where the trawl net gets released into the ocean.

We have caught the fish, now what?  Stay tuned for my exciting experience in the wet lab handling the pollock and other marine wild life.  It is most certainly an opportunity of a lifetime.

Personal Log

What an adventure!

I was lucky enough to spend a day exploring Dutch Harbor, Alaska before departing on the pollock survey across the Bering Sea. It took me three plane rides, several short lay-overs and and a car ride to get here, a total of 16 hours. There is a four hour time difference between Dutch Harbor and Dover, Delaware. It takes some getting used to, but definitely worth it. The sun sets shortly after 12:00 midnight and appears again around 5:00 in the morning. Going to sleep when it’s still daylight can be tricky. Thank goodness I have a curtain surrounding my bed. Speaking of the bed, it is extremely comfortable. It is one of those soft pillow top beds. Getting in and out of the top bunk can be challenging. I haven’t fallen yet.

My bed is the top bunk.

My bed is the top bunk.

During my tour through the small town of Dutch Harbor, I have encountered very friendly residents and fishermen from around the world.  I was fortunate to see the U.S. Coast Guard ship Healy docked at the harbor. What a beautiful vessel.  Dutch Harbor has one full grocery store (Safeway) just like we have in Delaware, with the exception of some of the local Alaska food products like Alaska BBQ potato chips. They have a merchant store that sells a variety of items ranging from food, souvenirs, clothing, and hardware. They have three local restaurants and a mom and pop fast food establishment. One of the restaurants is located in the only local Inn the Aleutian hotel, which also includes a gift shop. Dutch Harbor is home to several major fisheries. Dutch Harbor is rich in history and is home to the native Aleutian tribe. I took a tour of their local museum. It was filled with the history and journey of the Aleutian people. While driving through town, I got a chance to see their elementary and high school. They both looked relatively new. Dutch Harbor is also home to our nation’s first Russian Orthodox Church. Alaska is our 50th state and was purchased from Russia in 1867.

Me and the Oscar Dyson

Mary Murian in front of the Oscar Dyson

A very funny photo of me in my survival suit.

A very funny photo of me in my survival suit.

One of the coolest parts of my tour was walking around the area known as the “spit”. The “spit” is located directly behind the airport. I’m told it is called the “spit” because the land and water are spitting distance in length and width. We walked along the shoreline and discovered hundreds of small snails gathered around the rocks. We also found hermit crabs, starfish, sea anemones, jellyfish, and red algae. We saw red colored water, which is a bloom or a population explosion of tiny algae that get so thick that they change the color of the water.

One of numerous amazing views in Dutch Harbor

One of numerous amazing views in Dutch Harbor

tas 2014 day 1 and perboarding july 2-4th 089

Starfish

Another animal in abundance in Dutch Harbor is the bald eagle. There is practically one on every light post or tall structure. Often the bald eagles are perched in small groups. Watch out: if you walk too close to a nesting mother, she will come after you. They are massive, regal animals. I never get tired of watching them.

We had to watch our step, the snails were everywhere along the shoreline of the Spit.

We had to watch our step, the snails were everywhere along the shoreline of the Spit.

A bald eagle hoping to find some lunch.

A bald eagle hoping to find some lunch.

Russian Orthodox Church in Dutch Harbor, AK

Russian Orthodox Church in Dutch Harbor, AK

Did You Know?

Did you know that Alaska’s United States Coast Guard vessel has the ability to break through sea ice? 

This is especially helpful if you want to study northern areas, which are often ice covered, in the winter, and to assist a smaller boat if it gets trapped in the ice.

U.S. Coast Guard Ship Healy docked at the Spit.

U.S. Coast Guard Ship Healy docked at the Spit.

Did you know that scientists set time to Greenwich Mean Time (GMT) which is the time in a place in England?

This reduces confusion (e.g. related to daylight savings, time zones) when the measurements are analyzed.

Key Vocabulary:

Carnivore

Primary Consumer

Secondary Consumer

Nautical Miles

Trawling

Stern

Acoustics

Decomposers

Echosounder

Meet the Scientist:

Alex De Biologist

Alex De Robertis Chief Scientist

Leg II Chief Scientist Dr. Alex De Robertis

Title: NOAA Research Fishery Biologist (10 years)

Education:  UCLA Biology Undergraduate Degree

Scripps Institute Oceanography San Diego, CA PhD.

Newport, Oregon Post Doctorate work

Living Quarters:

Born in Argentina and moved to England when one-year old.

Lived in Switzerland and moved to Las Angeles,CA at the age of 13.

Currently lives in Seattle, Washington, and he has two kids aged one and five.

Job Responsibilities:

Responsible for acoustic trawl surveying at Alaska Fisheries Science Center

Was able to help with the Gulf of Mexico oil spill clean-up using the same echo sonar used on trawl surveys.

What is cool about his work:

He enjoys his work, especially the chance to travel to different geographic locations and meet new people.  “You never know what you are going to encounter; there is always a surprise or curve ball, when that occurs you adjust and just go with it”.

In the near future, he would love to see or be part of the design for an autonomous ocean robot that will simplify the surveying process.

He has been interested in oceans and biology since a small boy.  He remembers seeing two divers emerge from the sea and was amazed it was possible.

Mary Murrian: Getting Ready to Fly to Alaska, July 1, 2014

NOAA Teacher at Sea

Mary Murrian

(Almost) Onboard NOAA Ship Oscar Dyson

July 19- July 22, 2014

 

Mission:  Annual Pollock Survey

Geographical area of cruise: Bering Sea and Gulf of Alaska

Date: July 1, 2014

Personal Log

Greetings from Dover, Delaware, the first state to ratify the United States Constitution!  My name is Mary Murrian and I teach math and science to a wonderful group of fifth grade students at William Henry Middle School.  My journey will begin early in the morning on Wednesday, July 2, 2014.  My son, Robert–an upcoming junior at the University of Delaware, is driving me to the Philadelphia airport at 3:00 am in the morning.  After transferring planes in Chicago, Illinois and then again in Anchorage, Alaska, I will finally make land at my final destination, Dutch Harbor, Alaska.

disney trip 2014 009

If you are a Deadliest Catch fan you will recognize Dutch Harbor as the home base for the popular television show on the Discovery channel.  I will be aboard NOAA ship Oscar Dyson, a NOAA (National Oceanic and Atmospheric Administration) ship.  I have the wonderful opportunity to work  with the crew and scientists aboard the Oscar Dyson to research and determine the abundance and health of walleye pollock, one of the largest fisheries in the world.  If you have ever eaten fish sticks or imitation seafood, most likely you have tried pollock!

Thanks to the NOAA Teacher at Sea program, I am afforded this wonderful opportunity to work hands-on, learning the science involved in research aboard a NOAA ship. I currently teach a unit on ecosystems, where my students learn about the ecosystem around them and the interrelationships between organisms in an environment focusing on food chains, food webs, and environmental factors that play a role in an ecosystem. This experience will enhance my knowledge of marine ecosystems and the important role the fish play in supporting a healthy and sustainable environment.  I look forward to learning and growing through my participation with experts in their field.  I want to gather as much information as possible, in order to bring it back to my classroom and share my real life experience with my students this upcoming school year and years to come.  What a wonderful way to bring real-life data and experiences to my students.

I have been asked numerous times if I am scared or nervous to be aboard a ship sailing on the Bering Sea.  My response, NO!  I am thrilled.  I cannot wait for my journey to begin.  I have cruised to Alaska before, however not as far north as the Dutch Harbor area and I was on a recreational cruise ship. It was beautiful and the scenery was amazing.  I never saw ice as blue as I did when we crossed Tracy Arm fjord.  A fjord is a typically long, narrow valley with steep sides that are created by advancing glaciers (http://oceanservice.noaa.gov/education/kits/estuaries/media/supp_estuar04_fjord.html).  The trip, although freezing, was amazing.  I also found out that glacial ice often appears blue because of years of compression gradually making the ice denser over time, forcing out the tiny air pockets between the crystals.  When glacier ice becomes extremely dense, the ice absorbs a small amount of red light, leaving a bluish tint in the reflected light (http://nsidc.org/cryosphere/glaciers/quickfacts.html).  Super cool!

Sawyer Glacier in Tracy Arm, showing the very blue ice.  Photo provided by personnel of the NOAA ship John N. Cobb

Sawyer Glacier in Tracy Arm, showing the very blue ice.
Photo provided by personnel of the NOAA ship John N. Cobb

I look forward to my upcoming experience, a trip of a lifetime.  There is more to come, I hope you will continue with me on my journey across the Gulf of Alaska and the Bering Sea!  Watch out Alaska, here I come!

Britta Culbertson: The Beat of the Bongo (Part 2) – Catching Zooplankton, September 12, 2013

NOAA Teacher at Sea
Britta Culbertson
Aboard NOAA Ship Oscar Dyson
September 4-19, 2013

Mission: Juvenile Walley Pollock and Forage Fish Survey
Geographical Area of Cruise: Gulf of Alaska
Date: Wednesday, September 12th, 2013

Weather Data from the Bridge (for Sept 12th, 2013 at 9:57 PM UTC):
Wind Speed: 23.05 kts
Air Temperature: 11.10 degrees C
Relative Humidity: 93%
Barometric Pressure: 1012.30 mb
Latitude: 58.73 N              Longitude: 151.13 W

Science and Technology Log

Humpback Whale

A humpback whale. (Photo credit: NOAA)

We have been seeing a lot of humpback whales lately on the cruise.  Humpback whales can weigh anywhere from 25-40 tons, are up to 60 feet in length, and consume tiny crustaceans, plankton, and small fish.  They can consume up to 3,000 pounds of these tiny creatures per day (Source: NOAA Fisheries).  Humpback whales are filter feeders and they filter these small organisms through baleen.  Baleen is made out of hard, flexible material and is rooted in the whale’s upper jaw.  The baleen is like a comb and allows the whale to filter plankton and small fish out of the water.

Baleen

This whale baleen is used for filter feeding. It’s like a small comb and helps to filter zooplankton out of the water. (Photo credit: NOAA)

I’ve always wondered how whales can eat that much plankton! Three thousand pounds is a lot of plankton.  I guess I felt that way because I had never seen plankton in real-life and I didn’t have a concept of how abundant plankton is in the ocean. Now that I’m exposed to zooplankton every day, I’m beginning to get a sense of the diversity and abundance of zooplantkon.

In my last blog entry I explained how we use the bongo nets to capture zooplankton.  In this entry, I’ll describe some of the species that we find when clean out the codends of the net.  As you will see, there are a wide variety of zooplankton and though the actual abundance of zooplankton will not be measured until later, it is interesting to see how much we capture with nets that have 20 cm and 60 cm mouths and are towed for only 5-10 minutes at each location.  Whales have much larger mouths and feed for much longer than 10 minutes a day!

Cleaning the codends is fairly simple; we spray them down with a saltwater hose in the wet lab and dump the contents through a sieve with the same mesh size as the bongo net where the codend was attached.  The only time that this proves challenging is if there is a lot of algae, which clogs up the mesh and makes it hard to rinse the sample.  Also, the crab larvae that we find tend to hook their little legs into the sieve and resist being washed out.  Below are two images of 500 micrometer sieves with zooplankton in them.

Zooplankton

A mix of zooplankton that we emptied out of the codend from the bongo.

Crab larvae

Crab larvae (megalopae) that we emptied out of the codend.

Some of the species of zooplankton we are finding include different types of:

  • Megalopae (crab larvae)
  • Amphipods
  • Euphausiid (krill)
  • Chaetognaths
  • Pteropods (shelled: Limasina and shell-less: Clione)
  • Copepods (Calanus spp., Neocalanus spp., and Metridea spp.)
  • Larval fish
  • Jellyfish
  • Ctenophores

The other day we had a sieve full of ctenophores, which are sometimes known as comb jellies because they possess rows of cilia down their sides.  The cilia are used to propel the ctenophores through the water.  Some ctenophores are bioluminescent.  Ctenophores are voracious predators, but lack stinging cells like jellyfish and corals. Instead they possess sticky cells that they use to trap predators (Source:  UC Berkeley).  Below is a picture of our 500 micrometer sieve full of ctenophores and below that is a close-up photo of a ctenophore.

Ctenophores

A sieve full of ctenophores or comb jellies.

Ctenophore

A type of ctenophore found in arctic waters. (Photo credit: Kevin Raskoff, MBARI, NOAA/OER)

It’s fun to compare what we find in the bongo nets to the type of organisms we find in the trawl at the same station.  We were curious about what some of the fish we were eating, so we dissected two of the Silver Salmon that we had found and in one of them, the stomach contents were entirely crab larvae! In another salmon that we dissected from a later haul, the stomach contents included a whole capelin fish.

Juvenile pollock are indiscriminate zooplanktivores.  That means that they will eat anything, but they prefer copepods and euphausiids, which have a high lipid (fat) content. Once the pollock get to be about 100 mm or greater in size, they switch from being zooplanktivores to being piscivorous. Piscivorous means “fish eater.”  I was surprised to hear that pollock sometimes eat each other.  Older pollock still eat zooplankton, but they are cannibalistic as well. Age one pollock will eat age zero pollock (those that haven’t had a first birthday yet), but the bigger threat to age zero pollock is the 2 year old and older cohorts of pollock.  Age zeros will eat small pollock larvae if they can find them.  Age zero pollock are also food for adult Pacific Cod and adult Arrowtooth Flounder.  Older pollock, Pacific Cod, and Arrowtooth Flounder are the most voracious predators of age 0 pollock.  Recently, in the Gulf of Alaska, Arrowtooth Flounder have increased in biomass (amount of biological material) and this has put a lot of pressure on the pollock population. Scientists are not yet sure why the biomass of Arrowtooth Flounder is increasing. (Source: Janet Duffy-Anderson – Chief Scientist aboard the Dyson and Alaska Fisheries Science Center).

The magnified images below, which I found online, are the same or similar to some of the species of zooplankton we have been catching in our bongo nets.  Click on the images for more details.

Personal Log (morning of September 14, 2013)

I’m thankful that last night we had calm seas and I was able to get a full eight hours of sleep without feeling like I was going to be thrown from my bed.  This morning we are headed toward the Kenai Peninsula, so I’m excited that we might get to see some amazing views of the Alaskan landscape.  The weather looks like it will improve and the winds have died down to about 14 knots this morning.  Last night’s shift caught an octopus in their trawl net; so hopefully, we will find something more interesting than just kelp and jellyfish in our trawls today.

Did You Know?

I mentioned that we had found some different types of pteropods in our bongo nets.  Pteropods are a main food source for North Pacific juvenile salmon and are eaten by many marine organisms from krill to whales.  There are two main varieties of pteropods; there are those with shells and those without.  Pteropods are sometimes called sea butterflies.

Pteropod

A close-up of Limacina helicina, a shelled pteropod or sea butterfly. (Photo credit: Russ Hopcroft/University of Alaska, Fairbanks)

Unfortunately, shelled pteropods are very susceptible to ocean acidification.  Scientists conducted an experiment in which they placed shelled pteropods in seawater with pH and carbonate levels that are projected for the year 2100.  In the image below, you can see that the shell dissolved slowly after 45 days.  If pteropods are at the bottom of the food chain, think of the implications of the loss of pteropods for the organisms that eat them!

Pteropods

Shelled pteropods after being exposed to sea water that has the anticipated carbonate and pH levels for the year 2100. Notice the degradation of the shell after 45 days. (Photo credit: David Liittschwager/National Geographic Stock)

Read more about ocean acidification on the NOAA’s Pacific Marine Environmental Laboratory (PMEL) website. Also, check out this press release from November 2012 by the British Antarctic Survey about the first evidence of ocean acidification affecting marine life in the Southern Ocean.

Teacher’s Corner

In my last blog entry on the bongo, I talked about using the “frying pan” or clinometer to measure wire angle.  If you’re interested in other applications of clinometers, there are instructions for making homemade clinometers here and there’s also a lesson plan from National Ocean Services Education about geographic positioning and the use of clinometers this website.

If you are interested in teaching your students about different types of plankton, here is a Plankton Wars lesson plan from NOAA and the Southeast Phytoplankton Monitoring Network, which helps students to understand how plankton stay afloat and how surface area plays a role in plankton survival.

If you would like to show your students time series visualizations of phytoplankton and zooplankton, go to NOAA’s COPEPODite website.

Zooplankton time series

Zooplankton time series visualization from the COPEPODite website.

For more plankton visualizations and data, check out NOAA’s National Marine Fisheries Service website.

If you are interested in having your students learn more about ocean acidification, there is a great ocean acidification module developed for the NOAA Ocean Data Education Project on the Data in the Classroom website.

Britta Culbertson: The Beat of the Bongo (Part 1): Catching Zooplankton, September 11, 2013

NOAA Teacher at Sea
Britta Culbertson
Aboard NOAA Ship Oscar Dyson
September 4-19, 2013

Mission: Juvenile Walley Pollock and Forage Fish Survey
Geographical Area of Cruise: Gulf of Alaska
Date: Wednesday, September 11th, 2013

Weather Data from the Bridge (for Sept 11th, 2013 at 10:57 PM UTC):
Wind Speed: 4.54 kts
Air Temperature: 10.50 degrees C
Relative Humidity: 83%
Barometric Pressure: 1009.60 mb
Latitude: 58.01 N              Longitude: 151.18 W

Science and Technology Log

What is a bongo net and why do we use it?

As I mentioned in a previous entry, one of the aspects of this cruise is a zooplankton survey, which happens at the same stations where we trawl for juvenile pollock.  The zooplankton are prey for the juvenile pollock.  There are many types of zooplankton including those that just float in the water, those that can swim a little bit on their own, and those that are actually the larval or young stage of much larger organisms like crab and shrimp.  We are interested in collecting the zooplankton at each station because because we are interested in several aspects of juvenile pollock ecology, including feeding ecology.  In order to catch zooplankton, we use a device called a bongo net.  The net gets its name because the frame resembles bongo drums.

20bon

Diagram of a 20 cm bongo net set-up. (Photo credit: NOAA – Alaska Fisheries Science Center)

The bongo net design we are using includes 2 small nets on a 20 cm frames with 153 micrometer nets attached to them and 2 large nets on 60 cm frames with 500 micrometer nets.  The 500 micrometer nets catch larger zooplankton and the 153 micrometer nets catch smaller zooplankton.  In the picture above, there are just two nets, but our device has 4 total nets.  At the top of the bongo net setup is a device called the Fastcat, which records information from the tow including the depth that bongo reaches and the salinity, conductivity, and temperature of the water.

Bongo in water

This is what the bongo looks like when it’s finally in the water (Photo credit: John Eiler)

What happens during a bongo net tow?

The process of collecting zooplankton involves many people with a variety of roles.  It usually takes three scientists, one survey tech, and a winch operator who will lower the bongo net into the water.  In addition, the officers on the bridge need to control the speed and direction of the boat.  All crew members are in radio contact with each other to assure that the operation runs smoothly.  Two scientists and a survey tech stand on the “hero deck” and work on getting the nets overboard safely.  Another scientist works in a data room at a computer which monitors the depth and angle of the bongo as it is lowered into the water.  It is important to maintain a 45 degree angle on the wire that tows the bongo to make sure that water is flowing directly into the mouth opening of the net.  One of the scientists on the hero deck will use a device that we lovingly call the “frying pan,” but more accurately it is called a clinometer or inclinometer. The flat side of the device gets lined up with the wire and an arrow dangles down on the plate and marks the angle.  The scientist calls out the angle every few seconds so that the bridge knows whether or not to increase or decrease the speed of the ship in order to maintain the 45 degree angle necessary.

Peter and the pan

Scientist Peter Proctor holds up the “frying pan” also known as a clinometer or inclinometer, which is used to measure the wire angle of the bongo when it’s in the water.

Meanwhile, back at the computer, we monitor how close the bongo gets to the bottom of the ocean.  We already know how deep the ocean is at our location because of the ship’s sonar.  The bongo operation involves a bit of simple triangle geometry.  We know the depth and we know the angles, so we just have to calculate the hypotenuse of the triangle that will be created when the bongo is pulled through the water to figure out how much wire to let out.  The survey tech uses a chart that helps him determine this quickly so he knows what to tell the winch operator in terms of wire to let out.  In the images below, you can see what we are watching as the bongo completes its tow.  The black line indicates the depth of the bongo, and the red, purple, and blue lines indicate temperature, conductivity, and salinity.

Good bongo tow

This is an example of a good bongo tow. The black line on the left of the graph shows a consistent tow angle both up and down. The key is that the black line should have a “v” shape on the graph if the tow is good.

Bad bongo

This graph shows what happens when a bongo gets caught in the current and stays at the same depth for a while. Look at how the black line isn’t smooth, but levels off for a bit. This happened with the bongo both when it was going down and coming back up to the surface.

When the bongo is within in 10 meters of the bottom, the survey tech radios the winch operator to start bringing the bongo back up.  It usually takes longer for it to come up as it does for it to go out, nevertheless, the 45 degree wire angle needs to be maintained.  When the survey tech sees the bongo at the surface of the water, the two scientists on the hero deck get ready to grab it.  This operation can be quite difficult when it’s windy and the seas are rough. If you look at the sequence of the photos below, pay attention to the horizon line where the water meets the sky and you can get a sense of the size of the swells that day.

When the bongo is safely back on deck, the person in the data room records the time of the net deployment, how long it takes to go down and up, how much wire gets let out, and the total depth at the station.  If anything goes wrong, this is also noted in the data sheet.

As the bongo reaches the surface, the scientists grab the net keep it from banging into the side of the ship.  When the net is on board, the next step is to read the flowmeters on the nets that indicate how much water has flowed through them.  Then we rinse the nets and wash all of the material down the nets and into the “codends” at the very end of the net.  These are little containers that can be detached and emptied to collect the samples.

Once the codends are detached, they are taken to the wet lab and rinsed.  Each of the four parts of the net has a codend where the zooplankton are caught. The zooplankton are rinsed out of the codends into a sieve and then collected in a jar and preserved with formalin.  The purpose of having two of each of the 20 cm and 60 cm bongo nets is to ensure that if one sample is bad or accidentally dumped, there is always a backup.  I have had to use the backup once or twice when there was a big jellyfish in the codend that kept me from getting all of the zooplankton out of the sample.

Codend

The codend from the 150 micrometer bongo net.

cleaning the codends and sieve

Britta rinsing the 500 micrometer sieve.

After we collect the zooplankton the samples are shipped to Seattle when we return to port. Back in the labs, the samples are sorted, the zooplankton are identified to species, and the catch is expressed at number per unit area.  This gives a quantitative estimate of the density of plankton in the water.  A high density of the right types of food means a good feeding spot for the juvenile walleye pollock!  This sorting process can take approximately one year.  I think it’s pretty amazing how much work goes into collecting the small samples we get at each station.  Just to think of all of the person hours and ship hours involved makes me realize how costly it is to study the ocean.

Colleen and zooplankton jar

Scientist Colleen Harpold holding up one of the preserved jars of zooplankton.

Colleen with zooplankton

Scientist Colleen Harpold holding up one of the preserved jars of zooplankton that has A LOT of algae in it too!

Personal Log

It is hard to believe that I’ve been on the ship a week now.  It feels strange that just 7 days ago I had never heard of a bongo net or an anchovy net.  Now I see them every day and I know how to identify several types of fish, jellyfish, and zooplankton.  I love working with the scientists and learning about the surveys we are doing.  Nearly every trawl reveals a special, new organism, like the Spiny Lumpsucker – go look that one up, I dare you!  We don’t have much down time and I’m trying to blog in between stations, but sometimes the time between stations after we finish our work can be 45 minutes and sometimes just 15 minutes.  So we are pretty much on the go for the whole 12-hour shift.  That’s where the fortitude part of Teacher at Sea comes in.  You definitely need to have fortitude to endure the long hours, occasional seasickness (I like to think of it as “sea discomfort”), and periodic bad weather.

By now though, it all seems routine and I’d like to think I’ve gotten used to being thrown around in my sleep a little now and again when we hit some rough seas.  This experience has been so worthwhile and even though I look forward to the comforts of home, I don’t really want it to end.  When I graduated from college, I worked with a herpetologist studying lizards in the desert south of Carlsbad, New Mexico.  I have fond memories of living in a tent for four months and collecting lizards all day to bring back to camp to measure and check for parasites.  I often miss doing scientific work, so Teacher at Sea has given me the opportunity to be a scientist again and to learn about a whole new world in the ocean.  What a treat! One of the reasons I chose to be a teacher was to be able to share my excitement about science with students and I feel so lucky that I get to share this experience too.

Did you know?

There are two species of Metridia, a type of copepod (zooplankton), that are found in the Gulf of Alaska/Bering Sea.  One of them is called Metridia lucens and the other one is Metridia oketensis.  These copepods are bioluminescent, which means that they glow when they are disturbed.  They sometimes glow when they are in the wake of the ship or on the crest of a wave.  Tonight when I was draining a codend into a sieve, my sieve looked like it had blue sparkles in it, but just for a second!  I asked our resident zooplankton expert, Colleen Harpold what they might be and she thought that my blue sparkles likely belonged to the genus Metridia.

If you are interested in reading a little more about Metridia, check out this blog from Scientific American on copepods in the Bering Sea!

Metridia longa

This is an image of Metridia longa. (Photo credit: NOAA/Hopcroft)

Glowing Metridia

This is a picture from Scientific American of Metridia spp. glowing while in a sieve. (Photo Credit: Chris Linder, Woods Hole Oceanographic Institute)

 Thanks for reading! Please leave me some comments or ask questions about any of the blog posts and feel free to ask other questions about the work we are doing or what it’s like at sea! I would love to be able to answer real-time while I am at sea.

Britta Culbertson: Hiding Out During Rough Seas, September 6, 2013

NOAA Teacher at Sea
Britta Culbertson
Aboard NOAA Ship Oscar Dyson
September 4-19, 2013

Mission: Juvenile Walley Pollock and Forage Fish Survey
Geographical Area of Cruise: Gulf of Alaska
Date: Friday, September 6th, 2013

Weather Data from the Bridge (for Sept 6th at 5:57 PM UTC):
Wind Speed: 42.65 knots
Air Temperature: 11.8 degrees C
Relative Humidity: 81%
Barometric Pressure: 987.4 mb
Latitude:57.67 N          Longitude: 153.87 W

Science and Technology Log

Weather Advsisory

The weather advisory for the Gulf of Alaska and around Kodiak Island (screen shot from NOAA Alaska Region Headquarters)

Spiridon Bay

Spiridon Bay (screenshot from Shiptracker.noaa.gov)

As you can see from my weather data section, the wind speed this morning was up to 42.65 knots.  We had waves near 18 feet and thus the Oscar Dyson ran for cover and tucked itself in an inlet on the North side of Kodiak Island called Spiridon Bay.  The Oscar Dyson’s location can be viewed in near real-time using NOAA’s Shiptracker website.   The screenshot above was taken from the Shiptracker website when we were hiding from the weather. The weather forecast from NOAA’s Alaska Region Headquarters shows that the winds should diminish over the next few days.  I’m thankful to hear that!

…GALE WARNING TONIGHT….TONIGHT…S WIND 45 KT DIMINISHING TO 35 KT TOWARDS MORNING. SEAS 23FT. PATCHY FOG..SAT…SW WIND 30 KT DIMINISHING TO 20 KT IN THE AFTERNOON. SEAS15 FT. PATCHY FOG..SAT NIGHT…W WIND 15 TO 25 KT. SEAS 8 FT. RAIN..SUN…SW WIND 20 KT. SEAS 8 FT..SUN NIGHT…S WIND 25 KT. SEAS 8 FT..MON…SE WIND 25 KT. SEAS 13 FT..TUE…S WIND 30 KT. SEAS 11 FT..WED…S WIND 25 KT. SEAS 9 FT.

Since the Dyson has been in safe harbor in Spiridon Bay for the last few hours, I have had some time to catch up on some blogging!  Let’s backtrack a few days to Wednesday, September 4th, when the Dyson left Kodiak to begin its journey in the Gulf of Alaska.  We headed out after 1PM to pick up where the last cruise left off in the research grid.  We reached our first station later in the afternoon and began work.  A station is a pre-determined location where we complete two of our surveys (see map below).  The circles on the map represent a station location in the survey grid.  The solid circles are from leg 1 of the cruise that took place in August and the hollow circles represent leg 2 of the cruise, which is the leg on which I am sailing.

The first step once we reach a station is to deploy a Bongo net to collect marine zooplankton and the second step is to begin trawling with an anchovy net to capture small, pelagic juvenile pollock and forage fishes that are part of the main study for this cruise. Pelagic fish live near the surface of the water or in the water column, but not near the bottom or close to the shore.  Zooplankton are “animal plankton”.  The generic definition of plankton is: small, floating or somewhat motile (able to move on their own) organisms that live in a body of water. Some zooplankton are the larval (beginning) stages of crabs, worms, or shellfish.  Other types of zooplankton stay in the planktonic stage for the entirety of their lives. In other words, they don’t “grow up” to become something like a shrimp or crab.

Station Map

Station map for leg 1 and leg 2 of the juvenile pollock survey. I am on leg 2 of the survey, which is represented with hollow circles on the map.

Before we reached the first station, we conducted a few safety drills.  The first was a fire drill and the second was an abandon ship drill.  The purpose of these drills is to make sure we understand where to go (muster) in case of an emergency.   For the abandon ship drill, we had to grab our survival suits and life preservers and muster on the back deck.  The life rafts are stored one deck above and would be lowered to the fantail (rear deck of the ship) in the event of an actual emergency.  After the drill I had to test out my survival suit to make sure I knew how to put it on correctly.

Life Jacket

Britta Mustering for Abandon Ship Drill on Oscar Dyson

survival suit

Britta models a survival suit – they even found a size SMALL for me!

On the way to our first station, we traveled through Whale Pass next to Whale Island, which lies off of the northern end of Kodiak Island.  While passing through this area, we saw a total of 4 whales spouting and so many sea otters, I lost track after I counted 20.  Unfortunately, none of my pictures really captured the moment.  The boat was moving too fast to get the sea otters before they flipped over or were out of sight.

Whale Island

A nautical chart map for Whale Island and Whale Passage

Personal Log

secure for sea!

Last night’s warning about high seas in the early morning of September 6th.

A lot of people have emailed to ask me if I have been getting seasick.  So far, things haven’t been that bad, but I figured out that I feel pretty fine when I’m working and moving about the ship.  However, when I sit and type at a computer and focus my attention on the screen that seems to be when the seasickness hits. For the most part, getting some fresh air and eating dried ginger has saved me from getting sick and fortunately, I knew about the threat of high winds last night, so I made sure to take some seasickness medication before going to bed.  After what we experienced this morning, I am sure glad I took some medication.

Everyone on board seems very friendly and always asks how I am doing.  It has been a real pleasure to meet the engineers, fisherman, NOAA Corps officers, scientists, and all others aboard the ship.  Since we have to work with the crew to get our research done, it’s wonderful to have a positive relationship with the various crew members.  Plus, I’m learning a lot about what kinds of careers one can have aboard a ship, in addition to being a scientist.

So far, I’ve worked two 12-hour shifts and even though I’m pretty tired after my long travel day and the adjustment from the Eastern Time Zone to the Alaskan Time Zone (a four hour difference), I’m having a great time!  I really enjoy getting my hands dirty (or fishy) and processing the fish that we bring in from the trawl net.  Processing the haul involves identifying, sorting, counting, measuring the length, and freezing some of the catch.  The catch is mainly composed of different types of fish like pollock and eulachon, but sometimes there are squid, shrimp, and jellyfish as well.

One of the hardest parts of the trip so far is getting used to starting work at noon and working until midnight.  We have predetermined lunch and dinner times, 11:30 AM and 5:00 PM respectively, so I basically eat lunch for breakfast and dinner for lunch and then I snack a little before I go to bed after my shift ends at midnight.  As the days go by, I’m sure I’ll get more used to the schedule.

Did You Know?

During one of our trawls, we found a lanternfish.  Lanternfish have rows of photophores along the length of their bodies.  Photophores produce bioluminescence and are used for signaling in deep, dark waters.  The fish can control the amount of light that the photophores produce.  Lanternfish belong to the Family Myctophidae and are “one of the most abundant and diverse of all oceanic fish families” (NOAA Ocean Explorer).

lanternfish

Lanternfish caught during a trawl. Note the dots along the bottom of the fish, these are photophores that emit bioluminescence.

Lanternfish
Photo of bioluminescing lanternfish (Photo Credit: BBC Animal Facts http://www.bbc.co.uk/nature/blueplanet/factfiles/fish/lanternfish_bg.shtml)

 

Britta Culbertson: Exploring the Oscar Dyson and Kodiak, AK Before Departure, September 3, 2013

NOAA Teacher at Sea
Britta Culbertson
Aboard NOAA Ship Oscar Dyson
September 4-19, 2013

Mission: Juvenile Walley Pollock and Forage Fish Survey
Geographical Area of Cruise: Gulf of Alaska
Date: Tuesday, September 3rd, 2013

Weather Data from the Bridge (for Sept 4th at 8:57 PM UTC):
Wind Speed: 5.11 kts
Air Temperature: 12.6 degrees C
Relative Humidity: 70%
Barometric Pressure: 1003.2 mb
Latitude: 57.78 N              Longitude: 152.43 W

Personal Log

Oscar Dyson

Oscar Dyson in Port – Kodiak, AK

My trip to Kodiak from Washington, DC was a long one.  I left DC early in the morning on September 2nd and I nearly missed my connection in Seattle after our flight left late from Reagan National Airport.  I tried to dash off the plane, lugging my suitcase and backpack, with only 10 minutes to get to my connecting flight before it was supposed to take off.  Fortunately, I know my way around SEA-TAC airport and with all of my escalator running experience from a year of DC living, I was able to get to my gate with 2 minutes to spare.  On the plane, I was reunited with the scientists for my cruise and off we flew to Anchorage.  Three and a half hours later, we arrived in Anchorage and from there it was just a one-hour flight to Kodiak Island where the NOAA ship the Oscar Dyson was in port.

While the ship was in port, we slept on board and I got used to the subtle rolls of the ship, which of course is nothing like when the ship is in motion.  After a long day of travel on Monday, we ate dinner in town and went straight to bed afterwards.  I spent the first day on the ship getting acquainted with the twists and turns of the hallways and the multiple staircases leading to different parts of the ship.  Interestingly, you can’t walk from bow to aft on the same level on the Dyson, which makes it kind of difficult to get a nice deck side stroll.

There are 8 people, including myself, on the science team and a total of 33 people aboard the ship.  I’m sharing a cabin with one of the scientists and we each have our own bunk with a small lamp and a curtain so we can close ourselves in and get some shut-eye.  Each stateroom (cabin) has a shower and toilet, which is pretty luxurious!  Once we get underway and get started working, I will work the noon to midnight shift and my roommate will work the midnight to noon shift.  That way we will each have time alone in the cabin when the other is working.

Stateroom

My stateroom on the Dyson

Private bathroom

Our private bathroom.

Mess Hall

Mess Hall (cafeteria) on the Dyson. Note the tennis balls and the tie downs on the chairs.

Science and Technology Log

Tuesday was our first full day in Kodiak and we started the day aboard the Dyson with a briefing about the scientific work that we would be doing during the cruise.  It was a bit overwhelming at first, because every term is completely new to me.  But because of the repetitive nature of the work we will be doing, everyone has assured me that once we get going, I will totally get the hang of it.  In short, one of the things we will be looking at is the year 0 pollock (those fish which haven’t had a first birthday yet).  The fish we collect during the survey will be analyzed back in Seattle to see how healthy they are.  From there, projections can be made about how many pollock will make it through the winter and survive until their first birthday.  Fish become vulnerable to the fishing when they reach year 3, so it’s important to understand the health of the young pollock now to set the numbers that can be caught by the fishing boats down the road.

Research boats are not like cruise ships.  There are few comfortable places to sit outside of the lounge and people are working around the clock on various shifts, so you have to be really quiet when walking through the hallways.  On board, there are automatically closing doors that slam shut during drills and emergencies, very steep staircases, and slippery floors. The Oscar Dyson has several labs below deck.  I will spend most of my time working in the wet lab processing the pollock that we collect.  There are computers on board and we also have internet, though the ship has to be going the right direction for us to be able to use it because otherwise the incoming signal gets blocked by the exhaust stack when the ship is at certain headings.

On Tuesday morning, we also had a short briefing about by Operations Officer Mark Frydrych, one of the NOAA Corps officers aboard the Dyson.  He described the general rules and regulations on board the ship.  Tomorrow (Wednesday) we head out to sea in the afternoon after the ship gets fueled.  We will have to travel for a few hours to get to our first station where the work begins.  I’m really looking forward to getting out to sea and starting to work on the project!

Did You Know?

Oscar Dyson

Oscar Dyson (Photo credit: NOAA)

“NOAA Ship Oscar Dyson R-224 supports NOAA’s mission to protect, restore and manage the use of living marine, coastal, and ocean resources through ecosystem-based management. Its primary objective is as a support platform to study and monitor Alaskan pollock and other fisheries, as well as oceanography in the Bering Sea and Gulf of Alaska. The ship also observes weather, sea state, and other environmental conditions, conducts habitat assessments, and surveys marine mammal and marine bird populations.

Oscar Dyson, was launched at VT Halter Marine, in Pascagoula, Mississippi on October 17, 2003, and was commissioned May 28, 2005 in Kodiak, Alaska. Oscar Dyson is the first of four new fisheries survey ships to be built by NOAA. The ship, one of the most technologically advanced fisheries survey vessels in the world, was christened Oscar Dyson by Mrs. Peggy Dyson-Malson, wife of the late Alaskan fisherman and fisheries industry leader, Oscar Dyson. The ship is homeported in Mr. Dyson’s home town of Kodiak, Alaska.”

Excerpt taken from: http://www.moc.noaa.gov/od/

This slideshow requires JavaScript.

 

Julia Harvey: We Came, We Fished, Now What? August 8, 2013

NOAA Teacher at Sea
Julia Harvey
Aboard NOAA Ship Oscar Dyson (NOAA Ship Tracker)
July 22 – August 10, 2013  

Mission:  Walleye Pollock Survey
Geographical Area of Cruise:  Gulf of Alaska
Date:  8/8/13 

Weather Data from the Bridge (as of 17:00 Alaska Time):
Wind Speed:  15.72 knots
Temperature:  13.4 C
Humidity:  73%
Barometric Pressure:  1012.1 mb

I just read this heads up about the weather tonight.

I just read this heads up about the weather tonight.

 

Science and Technology Log:

We came.  We fished.  We measured, counted and weighed.  Now What?  We completed one last trawl on Tuesday night (August 6th).  When we finished we had caught over 65,000 walleye pollock and a whole lot of POP (Pacific ocean perch) on this leg of the survey.

The scientists now process and analyze the data.

Darin Jones and Chief Scientist Patrick Ressler going over data collected.

Darin Jones and Chief Scientist Patrick Ressler going over data collected.

Darin and Patrick will present at a public meeting when we are back in Kodiak on Friday.  They will discuss what was seen and preliminary findings of the walleye pollock survey.  Back in Seattle the MACE team will further evaluate the data along with data from the bottom trawl survey and determine the walleye pollock biomass for the Gulf of Alaska.  This will then be taken under advisement by the North Pacific Fishery Management Council.

There is also the lab to clean.  Even though we cleaned the lab after each trawl, it needed a good scrub down.  There were scales and slime hidden everywhere.  Just when you thought you were done, more scales were discovered.

Kirsten, Abigale and Darin cleaning the fish lab.

Kirsten, Abigale and Darin cleaning the fish lab.

Did You Know?

The note on the white board stated that there will be beam seas tonight.  What does that really mean?  It means the waves are moving in a direction roughly 90° from our heading.  So the water will be hitting us at a right angle to our keel.  It will be a rocking boat tonight.

Darin took a sample of the salmon shark’s fin when we caught it.  It will be sent to a scientist in Juneau who works at Auke Bay Laboratories (where Jodi works).  The sample will be used to examine the population genetics of the salmon shark and other species such as the Pacific sleeper shark.

Personal Log:

In my first blog, I wrote about a childhood dream of becoming an oceanographer.  After my third year of teaching in the Peace Corps, I decided education was my new direction.   I was excited to taste that bygone dream aboard the Oscar Dyson.  How do I feel now?  I jokingly sent an email to my assistant principal telling her to look for a new science teacher because I love life at sea.  I  love collecting data in the field.  Although I was not responsible for analyzing the data and I do miss my boys, I had an awesome cruise.  So where does that leave me?

Heading to Kodiak across the Gulf of Alaska

Heading to Kodiak across the Gulf of Alaska

It leaves me back in the classroom with an amazing sea voyage experience to share with my students.  I will always long for that oceanographic career that could have been.  But perhaps after my experience, I will inspire future oceanographers and fisheries scientists.  And I would do Teacher at Sea again in a heartbeat.  I will follow up with the outcomes and biomass estimates from MACE (Mid-Water Assessment & Conservation Engineering) and I will most definitely follow Jodi’s research on the use of multibeam sonar for seafloor mapping.

I want to say thank you to everyone who made my experience one of the best of my life and definitely the best professional development of my career.  Thank you to Jennifer Hammond, Elizabeth McMahon, Jennifer Annetta, Emily Susko and Robert Ostheimer for the opportunity to participate in the NOAA Teacher at Sea Program.  Thank you to NOAA for developing a practical and realistic opportunity to connect my students to ocean science.  Thank you to the science team (Chief Scientist Patrick Ressler, Darin Jones, Paul Walline, Jodi Pirtle, Kirsten Simonsen, and Abigale McCarthy) aboard the Oscar Dyson for their willingness to train me, answer all of my questions, preview my blogs, and to allow me have a glimpse of their lives as scientists.  Thank you to Patrick Ressler and XO Chris Skapin for promptly providing feedback on my blogs.  And a special thanks to the night shift crew (Jodi, Paul and Darin).  I was very nervous about adjusting to my work hours (4 pm to 4 am) especially after falling asleep that first night, but I am very grateful for colleagues who were fascinating and night-time enjoyable.  Chats with everyone aboard the Oscar Dyson from fishermen to NOAA Corps to engineers to stewards to scientists were educational and pleasant.  I met lots of people from all over the U.S. and some just from Newport (2 hours from Eugene).

WOW.  How fortunate was I to be chosen?  I am nearly speechless about what I saw and what I did.  What a mind blowing three weeks.  Thank You!  Thank You!  Thank You!

Now I begin the transition of living during daylight hours.

Here I am

Here I am before the system hit us.

I hope everyone was able to sample a little of my adventure.  I appreciate everyone who followed my blog especially Camas Country Mill folks.

Julia Harvey: Calibration in Sea-Otterless Sea Otter Bay, August 7, 2013

NOAA Teacher at Sea
Julia Harvey
Aboard NOAA Ship Oscar Dyson (NOAA Ship Tracker)
July 22 – August 10, 2013 

Mission:  Walleye Pollock Survey
Geographical Area of Cruise:  Gulf of Alaska
Date: 8/7/13 

Weather Data from the Bridge (as of 21:00 Alaska Time):
Wind Speed:  10.42 knots
Temperature:  13.6 C
Humidity:  83%
Barometric Pressure:  1012.4 mb

Current Weather: A high pressure system is building in the east and the swells will increase to 8 ft tonight.

Science and Technology Log:

Before I begin, I must thank Paul for educating me on the calibration process.  Because calibration occurred during the day shift, I was not awake for some of it.

The EK60 is a critical instrument for the pollock survey.  The calculations from the acoustic backscatter are what determines when and where the scientists will fish.  Also these measurements of backscatter are what are used, along with the estimates of size and species composition from the trawling, to estimate fish biomass in this survey.  If the instruments are not calibrated then the data collected would possibly be unreliable.

Calibration of the transducers is done twice during the summer survey.  It was done before leg one in June, which began out of Dutch Harbor, and again now near Yakutat as we end leg three and wrap up the 2013 survey.

As we entered Monti Bay last night, Paul observed lots of fish in the echosounder.  This could pose a problem during calibrations.  The backscatter from the fish would interfere with the returns from the spheres.  Fortunately fish tend to migrate lower in the water column during the day when calibrations were scheduled.

This morning the Oscar Dyson moved from Monti Bay, where we stopped last night, into Sea Otter Bay and anchored up.  The boat needs to be as still as possible for the calibrations to be successful.

Monti and Sea Otter Bays Map by GoogleEarth

Monti and Sea Otter Bays
Map by GoogleEarth

Site of calibration: Sea Otter Bay

Site of calibration: Sea Otter Bay

Calibration involves using small metal spheres made either of copper or tungsten carbide.

Chief Scientist Patrick Ressler with a tungsten carbide sphere

Chief Scientist Patrick Ressler with a tungsten carbide sphere

Copper sphere photo courtesy Richard Chewning (TAS)

Copper sphere
photo courtesy Richard Chewning (TAS)

The spheres are placed in the water under transducers.  The sphere is attached to the boat in three places so that the sphere can be adjusted for depth and location.  The sphere is moved throughout the beam area and pings are reflected.  This backscatter (return) is recorded.  The scientists know what the strength of the echo should be for this known metal.  If there is a significant difference, then data will need to be processed for this difference.

The 38 khz transducer is the important one for identifying pollock.  A tungsten carbide sphere was used for its calibration. Below shows the backscatter during calibration, an excellent backscatter plot.

Backscatter from calibration

Backscatter from calibration

The return for this sphere was expected to be -42.2 decibels at the temperature, salinity and depth of the calibration  The actual return was -42.6 decibels.  This was good news for the scientists.  This difference was deemed to be insignificant.

Personal Log:

Calibration took all of the day and we finally departed at 4:30 pm.  The views were breathtaking.  My camera doesn’t do it justice.  Paul and Darin got some truly magnificent shots.

Goodbye Yakutat Bay

Goodbye Yakutat Bay

As we left Yakutat Bay, I finally saw a handful of sea otters.  They were never close enough for a good shot.  They would also dive when we would get close.  As we were leaving, we were able to approach Hubbard Glacier, another breathtaking sight.  Despite the chill in the air, we stayed on top getting picture after picture.  I think hundreds of photos were snapped this evening.

The Oscar Dyson near Hubbard Glacier

The Oscar Dyson near Hubbard Glacier

Location of Hubbard Glacier.  Map from brentonwhite.com

Location of Hubbard Glacier. Map from brentonwhite.com

Many came out in the cool air to check out Hubbard Glacier

Many came out in the cool air to check out Hubbard Glacier

I even saw ice bergs floating by

I even saw ice bergs floating by

Lots of ice from the glacier as we neared

Lots of ice from the glacier as we neared

Nearby Hubbard Glacier with no snow or ice

Near Hubbard Glacier

And there it is: Hubbard Glacier

And there it is: Hubbard Glacier

Hubbard Glacier

Hubbard Glacier

Hubbard Glacier

Hubbard Glacier

Did You Know?

According to the National Park Service, Hubbard Glacier is the largest tidewater glacier in North America.  At the terminal face it is 600 feet tall.  This terminal face that we saw was about 450 years old.  Amazing!

Read More about Hubbard Glacier

Julia Harvey: Working on the Night Shift (During Shark Week), August 5, 2013

NOAA Teacher at Sea
Julia Harvey
Aboard NOAA Ship Oscar Dyson (NOAA Ship Tracker)
July 22 – August 10, 2013     

Mission:  Walleye Pollock Survey
Geographical Area of Cruise:  Gulf of Alaska
Date:  8/5/13 

Weather Data from the Bridge (as of 17:00 Alaska Time):
Wind Speed:  9.54 knots
Temperature:  15.7 C
Humidity: 83 %
Barometric Pressure:  1017.9 mb

Current Weather: The winds have decreased and we are not moving as much.  The weather report calls for an increase to the winds with 7 ft swells on Wednesday.  But maybe it will die down before it reaches us.

August 6th sunset

August 6th sunset

Science and Technology Log:

We only will fish during daylight hours.  The sun is now setting before 10:00 pm and rising around 5:30 am.  And even though we are not fishing between sunset and sunrise, science continues.  At nightfall, we break transect and Jodi begins her data collection.

The Sustainable Fisheries Act mandates an assessment of essential fish habitat.  This is in conjunction with stock assessments of groundfish.   Jodi’s research involves integrating multibeam accoustic technology to characterize trawlable and untrawlable seafloor types and habitat for managed species.

Species that are part of the groundfish survey.

Species that are part of the groundfish survey.
Photo courtesy of Chris Rooper (Alaska Fisheries Science Center) from the Snakehead Bank multi-beam survey

A bottom trawl survey is conducted every other year in the Gulf of Alaska.  The goal is to better identify seafloor types using multibeam acoustics.  This would help improve groundfish assessment, and limit damage to habitat and trawling gear.

The Gulf of Alaska survey area is divided into square grids.

Trawlable or Untrawlable?

Trawlable or Untrawlable?

On this cruise we are conducting multibeam mapping in trawlable and untrawlable grid cells.  A grid cell is divided into 3 equidistant transects for a multibeam survey.  Jodi directs the ship to follow these smaller transect lines.  While the ship is following the transects lines, the multibeam sonar is active and data is collected.

Multibeam sonar

Multibeam sonar
Photo courtesy of Tom Weber (University of New Hampshire)

Jodi monitors the screen during ME70 activity.

Jodi monitors the screen during ME70 activity.

The SIMRAD ME70 is the multibeam sonar that Jodi is using for her research.  There are 6 transducers on the ship that will send out a fan of 31beams of varying frequencies.  The strength of their return (backscatter) can be analyzed for sea floor type.  Looking at the diagram below, you can see the differences in backscatter clearly in the range of 30 to 50 degrees (away from straight down).

Illustration of the multi-beams generated. photo courtesy of http://www.id-scope.mc/Geophy03_EN.html

Illustration of the multi-beams generated.
photo courtesy of http://www.id-scope.mc/Geophy03_EN.html

Silts will have a very weak backscatter and rock will have a strong backscatter.

Substrate differences when looking at 30 - 50 degrees. Courtesy of Jodi Pirtle

Substrate differences when looking at 30 – 50 degrees.
Courtesy of Jodi Pirtle

After the transects are completed,  Jodi and Darin complete 1 – 3 camera drops to record visually how the seafloor appears.  This camera below will be lowered to the ocean floor and video footage will stream to the computer for 10 minutes.  Then the camera is brought up.

Drop Camera

Drop Camera

An example of an untrawlable area. Photo courtesy of Jodi Pirtle
An example of an untrawlable area.
Photo courtesy of Jodi Pirtle.

Last night, Darin gave me the opportunity to operate the camera drop.  After a bit of instruction, it was showtime.  I am very grateful for the chance to explore the seafloor.

I operated the drop camera.   Photo by Darin Jones

I operated the drop camera.
Photo by Darin Jones

Here is what I saw at 190 meters.

Fish and rocks on the seafloor.

Fish and rocks on the seafloor.

I saw a flatfish right in front of the camera.

I saw a flatfish right in front of the camera.

For more photos of my drop camera experience, see the end of this blog.

CTD (conductivity, temperature, depth) drops are conducted in the grid as well.  Data that are gathered are used to correct for the speed of sound under varying conditions of the ocean.

CTD drop to record physical oceanographic data

CTD drop to record physical oceanographic data

The next day, Jodi processes the data from the ME70.  The bottom detection algorithm (a series of calculations) removes backscatter from the water column (from fish).

Each frame product represents 5 minutes of seafloor.  The following are outcomes from the algorithm and represent angle dependent data.  The images below, show backscatter on the left and bathymetry on the right.

This represents a homogenous sea floor.

This represents a homogenous sea floor.

This represents a heterogenous sea floor.

This represents a heterogenous sea floor.

Then Jodi takes into account a number of factors such as results from the CTD, motion of the boat (offset, attitude, pitch, roll), and tides.  These uncertainties are applied.

Uncertainties Photo courtesy of NOAA

Uncertainties
Photo courtesy of NOAA

Then she mosaics the data.

Result from Jodi's data.

Results
Photo courtesy of Tom Weber

The color image above represents the depth and the bottom image provides information on seafloor substrate.

The footage from the camera drops is also reviewed for more evidence of the seafloor substrate and to look for objects that would snag trawl nets.

I really appreciate Jodi taking the time to educate me on her research.  Her passion for her work is evident.  I look forward to seeing where her research leads.

Personal Log:

So who actually works the night shift (4pm to 4 am) in the “cave”.   Jodi Pirtle, Paul Walline and Darin Jones are the three scientists I have been lucky to work with during my cruise.

I  discussed Jodi’s work on the ship in the science section.  She has an extensive educational background.  She earned a BS in Biology from Western Washington University in Bellingham and then a MS in Environmental Science from Washington State University in Vancouver.  Then she earned a Ph.D in Fisheries from the University of Alaska at Fairbanks.  Her thesis was on ground fish habitat on rocky banks along the US west coast.  And her dissertation was based on red king crab nursery habitat.  She just finished her postdoc at the University of New Hampshire Center for Coastal and Ocean Mapping where her work applied multibeam acoustics to study trawlable and untrawlable seafloor types and groundfish habitat in the Gulf of Alaska.  She is now working on groundfish habitat suitability modeling after she was selected to be a National Research Council NOAA postdoc at the Alaska Fisheries Science Center Auke Bay Lab in Juneau.  Jodi continues to integrate multibeam acoustics in her research at ABL.

Jodi was born and raised in Cordova, Alaska which we came near when we were in Prince William Sound.  I have enjoyed listening to her speak of growing up in Alaska.  There are no roads out of Cordova, so imagine traveling with a sports team in high school?  I will not forget how she described the Exxon Valdez oil spill to me from the eyes of herself at 11 years old.

I have greatly appreciated her knowledge of the creatures we bring up in the nets.  She has an eye for finding the hidden gems like the chaetognath (arrow worm).

Jodi with a lumpsucker fish

Jodi with a lumpsucker fish

Jodi enjoys cross country skiing, snow boarding, berry picking, hiking and yoga.  She introduced me to beautiful ripe salmon berries back on Kodiak.

Delicate Salmonberries

Delicate salmon berries

Darin is a MACE (Midwater Assessment & Conservation Engineering) scientist who earned his BS in Marine Biology from the University of North Carolina at Wilmington and then his MS in Fisheries Resources form the University of Idaho at Moscow.  His master’s work involved disease resistance in bull trout.  He spent 5 years collecting fishing data as an observer aboard commercial fishing boats in Alaska.  He also tagged cod on George’s Bank and worked at several conservation fish hatcheries before moving to Seattle to work for MACE.  Darin is part of the team to assess the biomass of the walleye pollock in the Gulf of Alaska.

Darin filets some of the fish caught.

Darin filets some of the fish caught.

I have heard that Darin played in a band with some MACE colleagues but they broke up because one of them moved.  Maybe there will be a reunion tour.

Darin measuring a spiny dogfish

Darin measuring a spiny dogfish

He is a surfer and has surfed on Kodiak but his favorite surf spot so far was in Costa Rica. Darin is an easy-going guy who I often call Scott because he reminds me so much of a colleague at school.  Darin has patiently explained my tasks to me and helped me learn what I am really doing.  And he supported me as I did my first camera drop.

Darin watching me control drop camera. Photo by Jodi Pirtle

Darin watching me control drop camera.
Photo by Jodi Pirtle

Paul is a native of Washington state and completed his academics there as well.  He earned a BS in Oceanography and a Ph.D in Fisheries Oceanography from the University of Washington.  For 20 years he worked at the Israel Limnological and Oceanographic Institute.  He was involved in managing the water quality in Lake Kinneret.  His role was to estimate the number of fish to determine their affect on water quality.  Paul accomplished this by developing acoustics surveys of fish stocks in Israel.  Lake Kinneret, also known as the Sea of Galilee, provides Israel with 40% of its drinking water.

Lake Kinneret Courtesy of GoogleEarth

Lake Kinneret
Courtesy of GoogleEarth

In 2000, Paul moved back to Seattle and is working as a fisheries biologist for MACE.

Paul reading echograms and deciding to fish

Paul reading echograms and deciding to fish

I have been fortunate to see photographs that Paul has taken both on this trip and elsewhere.  He has an incredible talent for finding beauty.

Paul Walline

Paul Walline

I am writing this as we are tossing and turning in ten foot swells.  According to Paul, it doesn’t matter if the swells get any  bigger because the effect is the same. His calmness, knowledge and expertise remind me a lot of my dad.

As you can see, I worked with amazing, brilliant individuals.  The night shift rules.  We had awesome teamwork when a haul needed to be processed.

Jodi weighs and measures the pollock.  Darin removes otoliths and I packaged them up

Jodi weighs and measures the pollock. Darin removes otoliths and I packaged them up

And then we slept through the fog and awoke to beautiful sunsets (on some days).

Sunset by Yakutat Bay

Sunset by Yakutat Bay

Did You Know?

Glacial runoff changes the color of the ocean.  Compare the two photos.  The one at the bottom is near a glacier.

 

The ocean with no glacial runoff.

The ocean with no glacial runoff.

The ocean with glacial runoff.

The ocean with glacial runoff.

Animals Seen Today:

The bottom trawl that was brought up right when I began work, contained three types of sharks.  The smaller ones were spiny dogfish and spotted spiny dogfish.  The big one was a salmon shark.  Check out the video.

To read more about salmon sharks and to monitor their migration pattern, check out the content on Tagging of Pacific Predators website.  Click here: TOPP

My Drop Camera Experience

Checking out the bottom with the drop camera. Photo by Jodi Pirtle

Checking out the bottom with the drop camera.
Photo by Jodi Pirtle

Jodi and I monitoring the drop cam. Photo by Darin Jones

Jodi and I monitoring the drop cam.
Photo by Darin Jones

Julia bringing drop camera aboard. Photo by Darin Jones

Julia bringing drop camera aboard.
Photo by Darin Jones

Sea urchin in color.

Sea urchin in color.

Fish hiding on the left.

Fish hiding on the left.

Another sea urchin

Another sea urchin

Melissa George: Scraping the Bottom-Dwellers, August 6, 2013

NOAA Teacher at Sea
Melissa George
Aboard NOAA Ship Oscar Dyson
July 22 – August 9, 2013

Mission:  Pollock Survey
Geographical Area of Cruise:  Gulf of Alaska
Date:  Tuesday, August 6, 2013

Current Data From Today’s Cruise  (9 am Alaska Daylight Time)

Weather Data from the Bridge 
Sky Condition:  Partly Cloudy
Temperature:  15° C
Wind Speed: 7 knots
Barometric Pressure:  1019.6 mb
Humidity:  90%

August 6, 2013: Partly Cloudy or Partly Mountainy?

August 6, 2013: Partly Cloudy or Partly Mountainy?

Sun and Moon Data
Sunrise:  5:15 am
Sunset:  9:33 pm
Moonrise:  5:33 am
Moonset:  8:45 pm

Geographic Coordinates   ( 9 am Alaska Daylight Time)

Latitude:  59 ° 20.4 N Longitude:  141° 16.6 W
The ship’s position now can be found by clicking:  Oscar Dyson’s Geographical Position

Science and Technology Log

Besides the mid-water trawling, information about the pollock population is gathered in other ways on the Oscar Dyson research vessel.  One of these ways is direct, monitoring the pollock by trawling in other parts of the water column; the other way is indirect, evaluating the prey that the pollock feeds on.

Bottom Trawling

Scientists use acoustics to locate the signal for the fish.  Sometimes this signal is noticed near the ocean floor.  In this case, the PolyNor’eastern (PNE) Bottom Trawl Net is used to trawl for fish.  This net is a large net equipped with rubber bobbins that allow it to get close to the benthic region of the ocean without dragging.

Poly Nor'Eastern Bottom Trawling Net

Poly Nor’Eastern Bottom Trawling Net

During this research expedition, we used the PNE net six times to survey pollock.  Often times these trawls brought up other interesting sea life, that were quickly assessed (identified, measured, and recorded) and returned to the ocean.  The majority of invertebrate sea animals such as poriferans (sponges), cnidarians (sea anemones), annelids (segmented worms), mollusks (barnacles), arthropods (hermit crabs hiding in mollusk shells), and echinoderms (sea urchins and starfish) were brought up in these hauls.  In addition, some interesting species of fish (see this blog’s Trawling Zoology segment below) were gathered in bottom trawls.

Miscellaneous Invertebrates from Bottom Trawl

Miscellaneous Invertebrates from Bottom Trawl

Large Lingcod Caught in Bottom Trawl

Large Lingcod Caught in Bottom Trawl

Using the Methot Trawl

We use the Methot trawling net to sample krill, a type of zooplankton that pollock feeds on.  On this voyage, the Methot was used 6 times as well.  The Methot is a single net with a large square opening or mouth. The net is deployed from the stern and towed behind the vessel.  Inside the Methot is a small removable codend where much of the catch is deposited.

Methot Net Lying on Trawl Deck

Methot Net Lying on Trawl Deck

Raising the Methot Net

Raising the Methot Net

Codend of Methot Overflowing with Krill

Codend of Methot Overflowing with Krill

The krill is measured and counted as well.  First, the water is drained out, then it is weighed, and a small sample is weighed and counted.

Lining Up and Counting Krill

Lining Up and Counting Krill

Bottom trawls and Methot trawls are both important aspects of the pollock survey.

Personal Log

Accomplishment

Continuing with Maslow’s hierarchy of needs, I will discuss the top part of the pyramid, how self-actualization, or being involved in creative endeavors to expand one’s full potential, are met on the Oscar Dyson.  

A Version of Maslow's Hierarchy of Needs

A Version of Maslow’s Hierarchy of Needs

Since I am an honorary member of the am science team, I am privy to many discussions between the scientists on the team regarding a variety of topics.   For example, one side project on the mission is to gather information regarding the abundance and distribution of euphausiids (krill) in the Gulf of Alaska.  This research project involves the use of a smaller “critter camera,” engineered and built by two of the MACE (Midwater Assessment and Conservation Engineering) group members, to take pictures of krill at various ocean depths and (ideally) reconcile its distribution with acoustic and Methot trawl data.  The goal of the project is to provide insight into the feeding conditions of pollock.  The discussions between group members involve postulating, speculating, testing, theorizing, analyzing, teaching, and questioning; clearly this meaty dialog  indicates that the process of science is an intellectually stimulating and creative endeavor.

Scientist Team Members--- Abigail, Patrick, and Kirsten---Engaged in a Stimulating Discussion

Scientist Team Members— Abigail, Patrick, and Kirsten—Engaged in a Stimulating Discussion

Did You Know?
One of the people who views my blogs before they are posted is the Executive Officer (2nd in Charge) of the crew on the Oscar Dyson.  His name is Chris and on this mission he is “augmenting” or filling in for another employee.  Chris administers the day-to-day operations of the crew including logistics, payroll, and travel.  Chris is a member of the NOAA Corps; he has both a BS in Marine Biology and an MS in Management Information Systems from Auburn University located in Auburn, Alabama.  He grew up in various places in the Midwest (his dad was in the U.S. Airforce) and has worked in several fields including information technology and zookeeping.  He applied to the NOAA Corps because he wanted to live and work near the ocean.
Chris, the Executive Officer of the Oscar Dyson

Chris, the Executive Officer of the Oscar Dyson

Something to Think About: 

In previous posts, we have explored invertebrates encountered on this mission. Today we will look at a group of vertebrates from the class  Osteichthyes, a word that comes from the Greek osteon meaning “bone” and ichthus meaning “fish.”  We will focus on some of the other fish besides pollock found in bottom trawls.  These bottom-dwellers are quite interesting creatures.

One of the most frequently found fish, other than pollock, is a type of rockfish called the Pacific Ocean Perch (POP); the species name is Sebastes alutus (Greek: Sebastes “August, venerable”, alutus “grow, nourish”).  This fish actually was seen in many trawls, both mid-water and bottom. As the picture below indicates, the body and fins of the POP are light red; however, there are dark olivaceous areas on back under soft dorsal fin and on the caudal peducle.  The maximum length of the fish is 55 cm and it is commonly found at a depth between 100-350 m.

Pacific Ocean Perch (a type of Rockfish)

Pacific Ocean Perch (a type of Rockfish)

A fish that belongs to the same genus as the POP is the Tiger Rockfish, Sebastes nigrocinctus ( Latin: niger, “black” and cinctus, “belt”).  We found this fish once in a bottom trawl.  The bottom of the tiger rockfish is light red to orange with several broad, vertical black-red bands on body.  It grows to a maximum length of 61 cm and is commonly found at a depth between 55 to 274 m.  Notice how similar it looks to the POP.

Tiger Rockfish, notice the similarities to the Pacific Ocean Perch

Tiger Rockfish, notice the similarities to the Pacific Ocean Perch

One of the most colorful fish that was found in a bottom trawl was the kelp greenling, Hexagrammos decagrammus (Greek:  hexa, “six”; grammus, “letter, signal”, deca, “ten”), a fish that generally hangs out in rocky reefs and kelp beds in relatively shallow waters (up to 46 m).  The fish is olive brown to bluish grey, speckled with irregular blue spots if male and reddish brown to gold spots if female (those we caught were most likely female).  The fish reach a maximum length of 53 cm.

Kelp Greenling

Kelp Greenling

Julia Harvey: Pollock on Deck/The Beautiful, the Strange and the Interesting, August 3, 2013

NOAA Teacher at Sea
Julia Harvey
Aboard NOAA Ship Oscar Dyson (NOAA Ship Tracker)
July 22 – August 10, 2013    

Mission:  Walleye Pollock Survey
Geographical Area of Cruise:  Gulf of Alaska
Date:  August 3, 2013 

Weather Data from the Bridge (as of  00:00 Alaska Time):
Wind Speed:  26.5 knots
Temperature:  13.6 C
Humidity:  84%
Barometric Pressure:  1014.6 mb

Weather Update:
A low pressure system is in the north Pacific and we are having increase winds and swells.

Science and Technology Log:

We listened. We fished. Now what?

Before reporting to the fish lab, I must gear up.  Slime gear keeps the scales and goo off of my clothes.

slime gear

Preventing head to toe slime.

Julia Harvey

That is me holding coral while in my slime gear.

Fish are emptied out of the net and onto the table outside the fish lab.

fish table

The fish caught in the trawl net are emptied onto this table.

We can control how many fish land on the conveyor belt by raising the table and opening the door.

conveyor belt

As Darin opens the door, the fish will slide from the table to the conveyor belt.

The fish on the conveyor belt are separated by species.

Separating species

As the fish come off the table, Jodi and I separate the species while Darin weighs them.

In this blog we will focus on the pollock that were caught.

sorting pollock

Sorting pollock

Pollock are gathered into baskets and weighed.

pollock

Basket of pollock ready for the scale.

We group the pollock into 3 groups; age 1, age 2 and age 3+.  Each group as an entirety is weighed.  Each age group has a somewhat different protocol for processing.  Fifty specimens that are age 1 will be measured with the ichthystick and 10 will also be weighed.

icthystick

To measure a pollock put his head at zero and use the magnetic reader to mark his fork length.

Fish that are age 2 are processed as age 1 but are also sexed.

When measuring a pollock on an icthystick, one measures from the head to the fork in the tail.  The icthystick (a magnetic board for measuring fish) is connected to a computer that automatically records the data.

The larger pollock are grouped by sex. To do this, we cut open their abdomen and look for ovaries or testes.

sexing fish

The abdomen must be opened to determine the sex of the pollock

Then all of the fish (or at least 300) are measured on the icthystick.  Forty will be measured and weighed and set aside for otolith removal.

otolith removal

Otoliths are removed.

Otoliths are made of calcium carbonate and are located directly behind the brain of bony fishes.

otoliths

These are otoliths that were removed from an adult pollock.

They are involved in the detection of sound and the process of hearing.  The age of the fish can be established by counting the annuli much like one does when counting tree rings.

annuli

Scientists can count the rings of growth.

This age data allows scientists to estimate growth rates, maximum age, age at maturity, and trends of future generations. This data is vital for age based stock assessment models.  These fish are weighed and measured.  Otoliths are removed and placed in jars with glycerol thymol.

The jars have bar codes on the side so that the otoliths are linked to the fish’ weight, length and sex.

The otoliths are sent to Seattle for more detailed analysis of age. These results will be used to correspond length to age in the stock assessment report.

Sometimes, ovaries are removed and sent to other scientists for further histological study.

Other organisms that are caught alongside the pollock are counted and measured as well.  The catch might include Pacific ocean perch, salmon, herring, viper fish, lantern fish, jellyfish, squid, and capelin.  Below are a few of the normal finds and the rest can be found in my personal blog account “the beautiful, the odd and the interesting”.

capelin

capelin

herring

herring

POP

Pacific ocean perch

squid

squid

Personal Log:

The beautiful, the odd and the interesting

This trip is not just about pollock.  When we bring any of the nets in there is the possibility of weirdness and other things that catch my eye.  Jodi is always filling me in on the uniqueness of our discoveries.  And Darin lets me save organisms for photographing later.

My favorite find so far is the lumpsucker.  As Jodi says, they have gentle brown eyes and they do.  They also have suckers on the bottom that allow it to stick to substrate.

lumpsucker

Close up of lumpsucker

The Methot trawl went close to the bottom and picked up a handful of brittle stars.  At first, when they were mixed with all of the krill, it looked like a bunch of worms.

brittle stars

Brittle star collected from a methot trawl.

brittle stars

brittle stars

Pollock do eat young pollock.  We found evidence of this when Darin opened the stomach of an adult and discovered partially digested age 1 pollock.

pollock stomach

This pollock had feasted earlier on young pollock.

Lanternfish (Myctophids) make up a huge amount of the deep sea biomass.  They have photophores along their sides for producing light.

Lantern Fish

Lanternfish

The adult Pacific sandfish bury themselves in the sand with only their mouths protuding.

Sand Fish

sand fish

This sand fish was not happy with me.

Prowfish lack pelvic fins.  They have continuous teeth to feed on jellyfish.

prowfish

prowfish

When I think of deep ocean fish I think of the viperfish with its needle sharp teeth.

viper fish

Viper fish with finger for scale.

This cute mud star came up with the brittle stars.  It was also referred to as the cookie cutter starfish because it resembles a shortbread cookie.

mud star

Mud star

Salmon are good swimmers and usually escape the net.  A few are caught at the surface.

salmon

sockeye salmon

When we were in Kodiak, I would watch the moon jellies drift by.  Now we are catching several different species of jellyfish like this sunrise jelly.

jellyfish

One of many species of jellyfish I have seen.

Jodi always has a keen eye for finding nearly invisible creatures.  The arrow worm is a voracious predator.  They immobilize their prey with neurotoxins.

marine worm

arrow worm

I had never heard of a sea mouse before this cruise.  Now I have.  Except it is not a rodent.  It is a carnivorous worm that feeds on hermit crabs and other worms.  It is also a scavenger like a vulture.

Actually a worm

Sea Mouse

Some isopods are parasitic and will feed off of the blood of fish in the gill chamber.  I prefer their cousins the pill bugs.

isopod

parasitic isopod

sea pens

sea pens

sea anemone

sea anemones

Did You Know?

When we are all measuring and weighing away in the lab, it sounds like a video game.  Each machine has it’s own unique sound effects.  This allows scientists to have confidence that their data was recorded.

Lab machines

Scanning the bar code.

machine noise

All machines have unique recording sounds

Melissa George: Would You Like Fries with That? August 5, 2013

NOAA Teacher at Sea
Melissa George
Aboard NOAA Ship Oscar Dyson
July 22 – August 9, 2013

Mission:  Pollock Survey
Geographical Area of Cruise:  Gulf of Alaska
Date:  August 5, 2013

Current Data From Today’s Cruise  (2 pm Alaska Daylight Time)

Weather Data from the Bridge 
Sky Condition:  Partly Cloudy
Temperature:  15.8 ° C
Wind Speed: Light Wind
Barometric Pressure:  1018.7 mb
Humidity:  84%

August 5, 2013 is a Cloudy Day on the Oscar Dyson

August 5, 2013 is a Cloudy Day on the Oscar Dyson

Sun and Moon Data
Sunrise:  5:13 am
Sunset:  9:35 pm
Moonrise:  4:22 am
Moonset:  8:27 pm

Geographic Coordinates   ( 2pm Alaska Daylight Time)

Latitude:  59 ° 09.7 N Longitude:  141° 27.6 W
The ship’s position now can be found by clicking:  Oscar Dyson’s Geographical Position

Science and Technology Log

Processing the Catch
My last blog  post focused on mid-water trawling; this blog will focus on processing the catch.  When we process the catch, we are processing it in a scientific way, not a food production way.  The goal of any fish survey is to try to determine how many fish (in this case pollock) are in the sea  in order to establish sustainable fishing limits. Ideally, trawling allows scientists to randomly select a sample of pollock to measure a good representation of the pollock population.  The survey is undertaken in an ecologically friendly way with a focus to preserve as many fish as possible by releasing them alive back into the ocean. I will go through the steps of this process.

Step 1:  Sorting and  Measuring

Usually, fish brought in with the trawl net are placed directly on the table.  If the catch is especially large, it may be weighed first by attaching a scale to a crane, and then attaching the load to the scale.  The entire catch is weighed so the scientists can use the length and gender data taken from the sample to extrapolate for the entire catch.  Then a sample (ideally 300 pollock) are kept to process and the rest are released.  This data is combined with the acoustics data to estimate the size of the entire stock.

Delivering Fish From Trawling Net to Table

Delivering Fish From Trawling Net to Table

Fish are emptied out of the net and onto the table outside of the fish lab. The number of  fish that land on the conveyor belt can be controlled by raising the table and opening the door.  The fish on the conveyor belt are separated by species.  Although in the catch there are often many types of species of sea animals present,  the focus of this blog will be the pollock that are caught.

An Interested Observer Checks out the Pollock on the Conveyor Belt

An Interested Observer Checks out the Pollock on the Conveyor Belt

In the video clip, the vast majority of the fish are adult pollock, but sometimes there are a variety of age stages;  Age 0, Age 1, and Adult are what we have seen.  Pollock are sorted by age, gathered into baskets, and weighed.  Age 0 and Age 1 pollock are weighed and then measured with the icthystick, a magnetic fish measuring board, from the head to the fork in the tail.  The icthystick is connected to a computer that automatically records the data.  (The icthystick below shows how the length of capelin, a prey of pollock, are measured and recorded; the method is the same pollock).

Weighing the Small Pollock and Capelin

Weighing the Small Pollock and Capelin

Capelin on Icthystick

Capelin on Icthystick

Capelin Measurements on Computer Screen

Capelin Measurements on Computer Screen

Step 2:  Sexing

Each age group has a somewhat different protocol for processing.  Counts and measurements of weight and length are taken for the smaller pollock (and capelin).  The larger pollock are grouped by sex. To do this, the abdomen is sliced open with a scalpel, the innards are pushed aside, and ovaries or testes are identified.  After determining the sex of the fish,  its length is measured with the icthystick.  Finally, a subsample of fish are set aside for otolith removal.  As we process a catch, samples of fish and other species are collected for various off-board scientists.  For example, Age 0 pollock are kept for one scientist;  ovaries from mature pollock for another.

Identifying Pollock Sex and Maturity

Identifying Pollock Sex and Maturity

Sometimes it is difficult to tell the testes from the ovaries.  Generally, both are paired organs that lie along the vertebrae under the guts (stomach, liver, intestines).  The ovaries tend to be fuller and more brightly colored; the testes, stringier and paler.  However, these organs can vary somewhat depending on the maturity of the fish.  Below are examples of the organs from fish that have not yet spawned (photos courtesy of Story Miller, TAS 2010).

These are the testes of a pre-spawning male

Testes of a Pre-Spawning Male Pollock (bottom right)

These are ovaries in the pre-spawning stage

Ovaries of a Pre-Spawning Female Pollock (center)

Step 3:  Removing Otoliths

Otoliths are made of calcium carbonate and are located directly behind the brain of bony fishes. They are involved in the detection of sound and the process of hearing.  The age of the fish can be established by counting the annuli (small ridges on the otoliths) much like one does when counting tree rings.  This age data allows scientists to estimate growth rates, age at maturity, and exposure to various environmental conditions.

Removing Otoliths from Pollock

Removing Otoliths from Pollock

The otoliths are brought to Seattle for more detailed analysis, so after extracting them from the pollock, they are placed in jars with a preservative called glycerol thymol.  The jars have bar codes on the side so that the otoliths are linked to the fish’ weight, length and sex.  These results will be used to correspond length to age in the stock assessment report.

Personal Log Accomplishment

Continuing with Maslow’s hierarchy of needs, I will discuss some of the ways that the need of feelings of accomplishment are met on the Oscar Dyson.  

A Version of Maslow's Hierarchy of Needs
A Version of Maslow’s Hierarchy of Needs
The goal of the Oscar Dyson crew is to safely and successfully navigate the ship through the Gulf of Alaska transects collecting and processing pollock.  As of Saturday, August 3 on this mission, we have traveled almost 3000 nautical miles, traversed through 33 transects and completed 26 Aleutian Wing Trawls, 6 Poly Nor’eastern Bottom Trawls, and 6 Methots.  We have measured and recorded data for 4,387 fish;  2,696 of these were pollock.  We have also collected 334 otoliths.  These numbers give the team a sense of accomplishment, knowing that they have contributed to the data and information processing to promote sustainable fishing practices.  Check out this link, the NOAA FishWatch webpage that provides information on sustainable fishing practices.

Did You Know?

Married couples can work together aboard the Oscar Dyson.  Kristin and Vince met in graduate school at the University of Florida where they were working on Master’s Degrees in Fisheries and Aquatic Science.  They were collaborating on a project that focused on river systems in Florida.  After getting married and working in labs at both the University of Maryland and Oregon State, they applied for Survey Technician positions with NOAA.  Kristen and Vince work opposite shifts on the Oscar Dyson; Kristen works mornings and Vince works evenings.  As survey technicians they are responsible for the calibration and deployment of various data acquisition systems such as the Scientific Computer System (SCS) that is constantly monitoring information such as air temperature, sea temperature, salinity, chlorophyll levels and weather.  Kristen and Vince work as liaisons between the science team and the NOAA Corps.
Vince and Kristen, Oscar Dyson Survey Technicians

Vince and Kristen, Oscar Dyson Survey Technicians

Something to Think About: 

So far we have discussed the following invertebrate animal phyla:  Porifera and Cnideria.  Today’s episode of Trawling Zoology features other interesting representatives of the invertebrate animal kingdom:  Annelida, Mollusca, Arthropoda, and Echinodermata that have turned up in our catches.

Phylum Annelida-from the Latin word anulus meaning “little ring”

Annelids are segmented worms that have a linear series of external segments divided by septa (walls between segments) that house serially repeated nervous, muscle, and excretory systems.  Their anterior segments contain jaws, eyes, and cirri (small feelers that help with feeding).  Filter-feeding marine annelids capture bacteria and feed selectively on sediment particles within tubes buried in sand or mud.

Polychaete from the Phylum Annelida  (found in a bottom trawl)

Polychaete from the Phylum Annelida (found in a bottom trawl)

Phylum Mollusca-from the Latin word mollis meaning “soft”

Mollusca is one of the most diverse groups of animals on the planet, with at least 50,000 living species (and more likely around 200,000). It includes such familiar organisms as sea snails, octopuses, squid, clams, and chitons, all of which we have seen on this mission.  They all have soft bodies which typically have a “head” and a “foot” region.  Often their bodies are covered by a hard exoskeleton, as in the shells of snails and clams or the plates of chitons.  Squid and octopuses have small internal shells.

Members of the Squid Family, Gonotopsis borealis, the Armhook Squid

Members of the Squid Family, Gonotopsis borealis, the Armhook Squid

Hermit Crabs (Arthropods) Inhabiting the Shells of Mollusks

Hermit Crabs (Arthropods) Inhabiting the Shells of Mollusks

Phylum Arthropoda-from the combination of Greek words arthron meaning “jointed” and pous meaning “feet”

The Phylum Arthropoda includes organisms such as insects, spiders, and crustaceans (crabs and shrimp).  The vast majority of sea dwelling arthropods are crustaceans.  For example, the hermit crabs emerging from the mollusk shells in the picture above are members of the most abundant family on Earth, the arthropods.  Arthropods have an exoskeleton of a tough compound called chitin that forms a rigid armor with joints in between.  This outer shell provides the structure against which arthropod muscles pull, reduces water loss, and protects them from environmental dangers.  Below are other examples of arthropods found frequently in trawls.

Isopods (The Cockroaches of the Sea) among Krill, another type of Arthropod

Isopods (The Cockroaches of the Sea) among Krill, another type of Arthropod

Phylum Echinodermata-from the combination of Greek words echinos meaning “spiny” and derma meaning “skin”

The adults are recognizable by their (usually five-point) radial symmetry, and include such well-known animals as starfish, sea urchins, sand dollars, and sea cucumbers.  Echinoderms are found at every ocean depth and contains about 7000 living species. Echinoderms are also the largest phylum that has no freshwater or terrestrial (land-based) representatives. Two unique characteristics of this phylum are the ability to regenerate tissues and their ossified limestone exoskeletons.

Various Starfish found in a Bottom Trawl

Various Starfish found in a Bottom Trawl

Julia Harvey: Here Fishy Fishy/Prince William Sound, August 1, 2013

NOAA Teacher at Sea
Julia Harvey
Aboard NOAA Ship Oscar Dyson (NOAA Ship Tracker)
July 22 – August 10, 2013   

Mission:  Walleye Pollock Survey
Geographical Area of Cruise:  Gulf of Alaska
Date:  8/1/13

Weather Data from the Bridge (as of 00:00  Alaska Time):
Wind Speed:  12 knots
Temperature:  13 C
Humidity:  97 %
Barometric Pressure:  1021 mb

Science and Technology Log:

The main goal of Leg 3 of this mission is to use acoustics and trawling to survey the mid-water portion of the pollock population along the Gulf of Alaska starting near Kodiak to Yakutat Bay.

leg 3

Leg 3 began east of Kodiak and will continue to Yakutat

Pollock live in the an area between the middle of the water column and the seafloor.  Sometimes we sample the mid-water and sometimes we will sample the bottom.

bump-food-web_600

Location of Fish in Water Column

The Oscar Dyson carries three different types of trawling nets for capturing fish as part of the mid-water survey:  the Aleutian Wing Trawl (AWT),  a mid-water trawl net, the Poly Nor’Eastern (PNE), for bottom trawls and the Methot, which is for gathering samples of very small ocean creatures such as krill.  I will focus on the AWT, although some of the video footage is from a bottom trawl.

AWT

Scale model of the Aleutian Wing Trawl (AWT) net courtesy of NOAA Scientist Kresimir Williams

When the net is deployed from the ship, the first part of the net to hit  the water is called the codend.  This is where most of the fish end up after the trawl.  The mesh size of the net is smallest at the codend (about 1 cm) and gets larger as it approaches the doors (about 1 m).

A Cam Trawl goes in the water next.  This is a pair of cameras that help scientists identify and measure the fish that are caught in the net.  This technology can also be used to help  scientists validate their biomass estimate from trawling sampling counts.  This piece of equipment has to be clipped into loops on the trawl each time.

trawl camera

The trawl camera is attached to the net to monitor the fish entering the net.

The next piece of the net to hit the water is the “kite” which is secured to the head rope.  Here,  a series of sensors is attached to help the scientists gather data about the condition of the net including depth, size, and shape underwater. The major acoustic sensor, called the “turtle,” can tell if the fish are actually going into the net.

AWT Net

Close-up view of the AWT scale model to highlight the kite and the turtle that ride at the top of the net. The third wire holds the electrical wires that send data from the turtle to the bridge (courtesy of Teacher at Sea).

Once the kite is deployed, a pair of tom weights (each weighing 250 lbs), are attached to the bridal cables to help separate the head rope from the foot rope and ensure the mouth of the net will open.  Then, after a good length of cable is let out, the crew transfers the net from the net reel to the two tuna towers and attach the doors.  The doors create drag to ensure the net mouth opens wide.

The scientists use acoustic data to determine at what depth they should fish, then the OOD (Officer on Deck) uses a scope table to determine how much cable to let out in order to reach our target depth.  Adjustments to the depth of the head rope can be made by adjusting speed and/or adjusting the length of cable released.

The scientists use the acoustic data sent from the “turtle” to determine when enough fish are caught to have a scientifically viable sample size, then the entire net is hauled in.

Turtle

The turtle that can relay information to the science team about the number of fish collected.

Once on board, the crew uses a crane to lift the cod end over to the lift-table.  The lift-table then dumps the catch into the fish lab where the fish get sorted on a conveyor belt.

Net with Haul

Net with haul

Personal Log:

The Oscar Dyson needed to pick up materials for a net repair so we headed into Prince William Sound towards Valdez.  The area was spectacular.

Julia Harvey

Here I am in Prince William Sound

The sun was out and the skies were blue for most of the day.  Although we have had very calm seas, we have been under clouds for most of the last few days.

Enjoying the Sun

A handful of people gathered at the bow of the ship to enjoy the sun and the sights.

The absolute highlight of the day was spotting Dall porpoises and filming them bow surfing.

Here are snapshots of the day.  The area was so impressive that I have several hundred pictures.  Here are just a few:

porpoise

Still shot of Dall porpoise

sea otters

Verification that I did see sea otters

glacier

The sun shining bright on the Anderson glacier visible as we left Prince William Sound

Columbia glacier

The ship was just close enough to see Columbia glacier.

Click here to learn more about the Columbia glacier and to watch the changes to the glacier over time.

glacier

Look close to see the wall of ice of the Columbia glacier at the water’s edge.

Prince William Sound

Prince William Sound

Prince William Sound

Prince William Sound

Prince William Sound

Prince William Sound

Prince William Sound

Prince William Sound

I am reminded of the Exxon Valdez oil spill devastation.

Did You Know?

The Exxon Valdez (oil tanker) ran aground on Bligh Reef in Prince William Sound, Alaska on March 24, 1989.

Bligh Reef

This is the location where the Exxon Valdez hit the Bligh Reef.

 

The amount of oil spilled into this pristine environment exceeded 11 million gallons of crude oil and affected over 1300 miles of shoreline. According to OCEANA, as many as 2,800 sea otters, 300 harbor seals, 900 bald eagles and 250,000 seabirds died in the days following the disaster.

Jodi, who works the night shift with me, grew up in Cordova, Alaska and as a child remembers the smell of the disaster and the fears in her town (many were fishermen).

Has the area recovered? Part of the settlement with Exxon established a fund to support research.  Read more.

 

Melissa George: Catch Me if You Can, July 31, 2013

NOAA Teacher at Sea
Melissa George
Aboard NOAA Ship Oscar Dyson
July 22 – August 9, 2013

Mission:  Pollock Survey
Geographical Area of Cruise:  Gulf of Alaska
Date:  July 31, 2013

Current Data From Today’s Cruise

Weather Data from the Bridge (12 noon Alaska Daylight Time)
Sky Condition:  Cloudy
Temperature:  12.8 ° C
Wind Speed:  14 knots
Barometric Pressure:  1024.7 mb
Humidity:  89%

Clouds Seen from Bow of Oscar Dyson on July 31, 2013

Clouds Seen from Bow of Oscar Dyson on July 31, 2013

Sun and Moon Data 
Sunrise:  6:03 am
Sunset:  10:28 pm

Moonrise:  1:06 am
Moonset:  5:58 pm

Geographic Coordinates at 12 noon (Alaska Daylight Time)

Latitude:  59° 39.3′ N
Longitude:  157° 51.2′ W

The ship’s position now can be found by clicking:  Oscar Dyson’s Geographical Position

Science and Technology Log

The main goal of Leg 3 of this mission is to survey the mid-water portion of the pollock population using acoustics and trawls.  Pollock usually inhabit the middle of the water column down to the seafloor. This mid-water survey is typically carried out once every two years.  Another NOAA Fisheries survey observes the pollock that live close to the seafloor using bottom trawls.

Location of Fish in Water Column

Location of Fish in Water Column

Trawling 

The Oscar Dyson carries three different types of trawling nets for capturing fish as part of the mid-water survey:  the Aleutian Wing Trawl  (AWT),  a mid-water trawl net called the Poly Nor’Eastern bottom trawl, a net with special rubber bumpers so it can bounce along the ocean floor; and the Methot,  a small encased net that gathers very small ocean creatures such as krill.  I will be discussing trawling with the AWT in this blog.

leg 3

Leg 3 of the Mid-Water Survey Began East of Kodiak and Will End Near Yakutat

First, I will describe the AWT net, then I will explain how it works.  The AWT net is HUGE:  the mouth is about 25 m high and 35 m wide while the  net itself is over 150 m long (this is not counting the trawling wires that it is attached to!).  To give you an idea of how big this is, let’s think in school buses.  If we estimate a school bus to be about 10 m long, then this net would be 15 school buses long, and its mouth would be 3 school buses  wide and 2 school buses (end to end) tall.   The picture below also gives perspective in dimensions (keep in mind that the Blue Whale is only used to give relative dimensions, they are never caught in NOAA’s nets!)

Relative Dimensions of AWT Net (courtesy of Kresimir Williams)

Relative Dimensions of AWT Net (courtesy of Kresimir Williams)

I am going to describe how the net goes into the water, step by step.  Then you can watch a short sped-up video that my fellow Teacher at Sea mate, Julia Harvey, created.  She works the night shift (4 pm to 4 am) on the same cruise that I am on.

So here it goes…

Step 1:  The Codend

When the net is deployed from the ship, the first part of the net to hit  the water is called the codend (see the far right of the diagram above).  This is where most of the fish end up after the trawl.  The mesh size of the net is smallest at the codend (about 1 cm) and gets larger as it approaches the doors (about 1 m).

AWT

Labeled Scale Model of the Aleutian Wing Trawl (AWT) Net (courtesy of NOAA Scientist Kresimir Williams)

Step 2:  The Trawl Camera

A trawl camera is the next major part that hits the water.  This is a pair of cameras that help scientists identify and measure the fish that are caught in the net. This technology can also be used to help  scientists validate their biomass estimate from trawling sampling counts.    This piece of equipment has to be clipped into the side of the net each time the crew is instructed to deploy the AWT.

trawl camera

The Trawl Camera

Step 3:  The Kite

The next piece of the net to hit the water is the kite which is secured to the head rope.  Attached to the kite is  a series of sensors that help the scientists gather data about the condition of the net including depth, size, and shape underwater.   The major acoustic sensor, affectionately termed the turtle, can tell the scientists if the fish are actually going into the net.

Close-up view of the AWT scale model to highlight the kite and the turtle that ride at the top of the net.  The third wire holds the electrical wires that send data from the turtle to the bridge.

Close-up view of the AWT scale model to highlight the kite and the turtle that ride at the top of the net. The third wire holds the electrical wires that send data from the turtle to the bridge.

Step 4:  Deployment from A-Frame

Once the kite is deployed, a pair of tom weights (each weighing 250 lbs), are attached to the bridal cables to help separate the head rope from the foot rope and ensure the mouth of the net will open.  Then, after a good length of cable is let out, the crew transfers the net from the net reel to the two tuna towers and attaches the doors.  The doors act as hydrofoils and create drag to ensure the net mouth opens wide.

The scientists use acoustic data to determine at what depth they should fish, then the OOD (Officer on Deck) uses a scope table to determine how much cable to let out in order to reach our target depth.  Adjustments to the depth of the head rope can be made by adjusting speed and/or adjusting the length of cable released.

The scientists use more acoustic data sent from the turtle to determine when enough fish are caught to have a scientifically viable sample size, then the entire net is hauled in.  Once on board, the crew uses a crane to lift the codend over to the lift-table.  The lift-table then dumps the catch into the fish lab where the fish get sorted on a conveyor belt.  Click on Julia’s video below to see the entire process (sped up to retain the your interest!)

 Personal Log: 

Belongingness

Continuing with Maslow’s hierarchy of needs, I will discuss some of the ways that the need of belongingness is  met on the Oscar Dyson.  There are several different ways that comaraderie is fostered on the ship:   teamwork, common areas, meal time, and celebrations.

A Version of Maslow's Hierarchy of Needs

A Version of Maslow’s Hierarchy of Needs

Teamwork
Remember the main goal of Leg 3 of this mission is to survey by acoustic-trawl the mid-water portion of the pollock population.  To ensure that the goal of the mission is accomplished, several crews are necessary:  engineering, officer, deck, and science crews.   People assigned to a crew work together, and there is cross-talk between crews.  For example,  on the bridge where the officers work, there are two to four  people navigating the ship and instructing the deck crew.  The deck crew works together to put out and pull in the trawling nets, and the engineering crew works together to make sure the ship is operating properly. Similarly, the scientist crew members consult with each other while:  reading the acoustics on the computer screens;  deciding when, where, and how long to trawl; determining the best way to process the trawl; and reconciling the “catch” with the acoustical data.  The collaboration within and between the four crews mimics a sports team that has offensive and  defensive strings working together to maintain their positions to accomplish a common goal.
Oscar Dyson Crews

Oscar Dyson Crews

Common Areas
The ship is like a house with many rooms.  Most of the staterooms (bedroom/bath) are shared.  In terms of “living space” there is one dining area (called the galley), a conference room with books where people meet for drills or quiet work, a movie room, a laundry room, and an extra rest room.  Because all these areas are shared,  “ship etiquette” is followed, meaning that every individual keeps his or her space neat and also keeps the other common areas clean and organized.  Sometimes, reminders are placed in areas where ship etiquette needs polishing.
Reminder of Ship Etiquette in Common Restroom

Reminder of Ship Etiquette in Common Restroom

Meal Times
Meals on the Oscar Dyson are during one hour windows three times a day.  Breakfast is served from 7 to 8 am, lunch 11am to noon, and dinner 5 to 6 pm.  Unless people are sleeping or actively involved in trawling or processing, they eat at these times.  Therefore, mealtime is a time to chat, joke, ask questions, and tell stories.  
Galley Reminder

Galley Reminder

Celebrations
We have had three celebrations.  Two of these were for birthdays celebrated on the ship.  The stewards made a cake for dessert in one instance and hosted an ice cream social in the second.  Another celebration was when we were in Prince William Sound to pick up net repair supplies.  Because we were near land for the first time in many days and the sun was shining, many people came on deck at the same time to take pictures.  Some spotted porpoises which added to the excitement.  Fellow Teacher at Sea, Julia Harvey, captured a wonderful video of this event.  

Did You Know?

The ship stewards are the people who plan and prepare the meals for those on board.  Adam (below) is the second cook on the Oscar Dyson.  He worked in various restaurants in Portland before coming to NOAA as a General Vessel Assistant (GVA) helping with the different crews on various ships as needed. When the spot as a steward opened on the Oscar Dyson, Adam got the job.  He has taken various NOAA training courses for stewardship and is on the ship nine months out of the year as it surveys both in the Bering Sea and the Gulf of Alaska.

Adam, Steward on the Oscar Dyson

Adam, Steward on the Oscar Dyson

Something to Think About: 

 Today’s episode of Trawling Zoology features the animal family, Cnidaria.  Cnidaria is a word that originates from the Greek word cnidos which means “stinging nettle.”   Although the cnidarians are a very diverse family, all the members contain nematocysts (combination of Greek words nema meaning “thread” and kystis meaning “bladder”), basically barbed threads tipped with poison.  If you have ever been stung by a jellyfish,  you have felt this stinging sensation.

There are four very diverse groups of cnidarians:  Anthozoa which includes true corals, anemones, and sea pens;  Cubozoa, the amazing box jellies with complex eyes and potent toxins;  Hydrozoa,  the most diverse group with siphonophores, hydroids, fire corals, and many medusae; and  Scyphozoa, the true jellyfish.  We have brought up several members of these groups in our trawling.

Anthozoa:  We have brought on deck both sea pens and sea anenomes.  In both groups there was only one species represented.

Sea Pens

Sea Pens

Sea Anenomes (hermit crabs in front are not anthozoans)

Sea Anenomes (hermit crabs in front are not anthozoans)

Schyphozoa:  We brought up a couple of different species of jellyfish; we used a classification field guide to help us identify them.

Jellyfish from the Invertebrate Field Guide for Alaskan Waters

Jellyfish from the Invertebrate Field Guide for Alaskan Waters

Many Jellies (members of the Aequorea genus) Found in the Methot Trawl

Many Jellies (members of the Aequorea genus) Found in the Methot Trawl

Jellyfish, Cyanea capillata

Jellyfish, Cyanea capillata

To learn more about the Cnidaria Family, click the Cnidaria on the picture below, and stay tuned for further exploration of this animal Tree of Life.

Can you spot the Cnidarian on the Tree of Life?  Click on it to learn more.

Can you spot the Cnidarian on the Tree of Life? Click on it to learn more.

Julia Harvey: Listening to Fish/How I Spent My Shift, July 28, 2013

NOAA Teacher at Sea
Julia Harvey
Aboard NOAA Ship Oscar Dyson (NOAA Ship Tracker)
July 22 – August 10, 2013  

Mission:  Walleye Pollock Survey
Geographical Area of Cruise:  Gulf of Alaska
Date:  7/28/13

Weather Data from the Bridge (as of 18:00 Alaska Time):
Wind Speed: 15.61 knots
Temperature:  13.71 C
Humidity:  91%
Barometric Pressure:  1023 mb

Science and Technology Log:

How do scientists use acoustics to locate pollock and other organisms?

Scientists aboard the NOAA Research Vessel Oscar Dyson use acoustics, to locate schools of fish before trawling.  The Oscar Dyson has powerful, extremely sensitive, carefully calibrated, scientific acoustic instruments or “fish finders” including the five SIMRAD EK60 transducers located on the bottom of the centerboard.

Trnasducer

Scientists are using the EK60 to listen to the fish.

This “fish-finder” technology works when transducers emit a sound wave at a particular frequency and detect the sound wave bouncing back (the echo) at the same frequency.  When the sound waves return from a school of fish, the strength of the returning echo helps determine how many fish are at that particular site.

The transducer sends out a signal and waits for the return echo...

The transducer sends out a signal and waits for the return echo…

Sound waves bounce or reflect off of fish and other creatures in the sea differently.  Most fish reflect sound energy sent from the transducers because of their swim bladder<s, organs that fish use to stay buoyant in the water column.

swim bladder

The above picture shows the location of the swim bladder. (Photo courtesy of greatneck.k12.ny.us)

Click on this picture to see how sound travels from various ocean creatures through water. (Photo from sciencelearn.org)

Click on this picture to see how sound travels from various ocean creatures through water. (Photo from sciencelearn.org)

These reflections of sound (echoes) are sent to computers which display the information in echograms.  The reflections showing up on the computer screen are called backscatter.  The backscatter is how we determine how dense the fish are in a particular school.  Scientists take the backscatter that we measure from the transducers and divide that by the target strength for an individual and that gives the number of individuals that must be there to produce that amount of backscatter.  For example, a hundred fish produce 100x more echo than a single fish.  This information can be used to estimate the pollock population in the Gulf of Alaska.

echograms

These are the echograms that are produced by the EK60.  Five frequencies are used to help identify the type of fish.

The trawl data provide a sample from each school and allow the NOAA scientists to take a closer look by age, gender and species distribution.  Basically, the trawl data verifies and validates the acoustics data.  The acoustics data, combined with the validating biological data from the numerous individual trawls give scientists a very good estimate for the entire walleye pollock population in this location.

echogram for krill

These echograms are similar to the ones produced when we trawled for krill. Krill have a significant backscatter with the higher frequencies (bottom right screens)

Personal Log:

How I spent my shift on Saturday, July 27th?

When I arrived at work at 4 pm, a decision was made to trawl for krill.  A methot trawl is used to collect krill.

Methot Trawl

Survey tech, Vince and Fishermen Brian and Kelly ready the methot trawl.

Then we set to work processing the catch.  First we have to suit up in slime gear because the lab will get messy.  My previous blog mentioned not wanting to count all of the krill in the Gulf of Alaska.  But in this case we needed to count the krill and other species that were collected by the methot trawl.

Counting krill

I needed my reading glasses to count these small krill.

How many krill do you think we collected?

Krill Sample

This is the total krill from the first methot trawl of the night.
How many are here?

Patrick, the lead scientist, put a few specimens under the microscope so we could see the different types of krill.

krill

Closeup look at krill.
Photo courtesy of NOAA

The collection of krill was preserved in formaldehyde and sea water.  It will be sent to Poland for further species diagnosis.

preserving krill

Scientist Darin Jones preserves the krill for shipment to Poland.

As the ship continued back on transect, I wandered in to see what Jodi and Darin were doing with the data collected last night.   Jodi was processing data from the multibeam sonar and Darin was surveying the images from the drop camera.  Jodi was very patient explaining what the data means.  I will write more about that later.  But I did feel quite accomplished as I realized my understanding was increasing.

multibeam data

These images are what Jodi was processing.

A decision was made to do another methot trawl.  This time we had a huge sample.

In an approximately 50 gram sample we counted 602 individual krill.  Compare this to the 1728 individuals in a 50 gram sample from the first trawl.  They were much bigger this time.  The total weight of the entire sample of krill was 3.584 kilograms.

krill

This was the haul from the second methot trawl.

How many individuals were collected in the second trawl?  (Check your answer at the end of the blog)

Around midnight, Paul decided to verify an echogram by trawling.

trawl net haul

Emptying out the trawl net right next to the fish lab.

We collected data from the trawl net and the pocket net.

squid

This trawl had a variety of specimen including Pacific Ocean perch, salmon, squid, eulachon, shrimp and pollock.

The pocket net catches the smaller organisms that escape through the trawl net.

pocket trawl

These were caught in the pocket net.

It was after 2 am by the time we had processed catch and washed down the lab.  The internet was not available for the rest of my shift due to the ship’s position so I organized my growing collection of videos and pictures.

I wasn’t sure how I would handle my night shift (4 pm to 4 am) after I dozed off during the first night.  Now that I have adjusted, I really enjoy the night shift.  The night science team of Paul, Darin and Jodi are awesome.

Did You Know?

People who are on the Oscar Dyson live throughout the United States.  They fly to meet the boat when they are assigned a cruise.  Jodi is from Juneau, Alaska.  Paul is from Seattle, Washington.  And Darin is from Seattle/North Carolina.  There are a number who are based out of Newport, Oregon.

Something to Think About:

When we are fishing, a number of birds gather behind the boat.  What different sea birds are observable this time of the year in our survey area?

birds

Many sea birds follow the ship hoping for some of our catch.

Julia Harvey: Determining Population Size/A Day in My Life Cruising, July 27, 2013

NOAA Teacher at Sea
Julia Harvey
Aboard NOAA Ship Oscar Dyson (NOAA Ship Tracker)
July 22 – August 10, 2013 

Mission:  Walleye Pollock Survey
Geographical Area of Cruise:  Gulf of Alaska
Date:  7/27/13

Weather Data from the Bridge (at 1:00 am Alaskan time):

Wind Speed = 3.52 knots
Air Temperature = 13.6 C
Humidity = 94%
Barometric  Pressure = 1025.5 mb

Science and Technology Log:

How can you determine the population size of species?

You could count every member of the population.  This would be the most accurate but what if the population moves around a lot? What if the population is enormous and requires too much time to count each and every one?  Would you want to count all of the krill in the Gulf of Alaska?

Krill

The greyish fish are capelin. The pink organisms are krill.

You could mark and recapture.  In this method you catch individuals from the population and tag them.  Data are compiled from the recaptures and the population is mathematically calculated.  Halibut and many other populations are monitored this way and require fishermen to report any recaptures.

Tagged Halibut

Tagged Halibut
photo courtesy of Greenland Institute of Natural Resources

Another method is sampling.  The organisms in a small area are counted and then the overall population in the entire area is calculated.

Sampling

To determine the population of the organisms of the whole area, find the population density of the dark green area. In this case there are 8 per square meter. Multiply this density by the total area and that will be the population estimate.

line_transect

Using a transect to sample a population.
Photo courtesy of http://www.kscience.co.uk/as/module5/succession/fieldwork.htm

This picture above illustrates the use of a transect line.  On various increments along the transect line, samples of populations are taken.  Imagine the Oscar Dyson’s path as the measuring tape and the trawl net as the sampling square.

The overall survey area of the pollock study this summer is the northern Gulf of Alaska between the shore and the continental break.  Within this area transect lines were established.  These are pathways that the Oscar Dyson will travel along and periodically take samples of the fish.

Transect Plan

The pollock summer survey is broken into three legs. I am part of leg 3.
Photo courtesy of NOAA

The current set of transects are 25 nautical miles (1 nautical mile is equal to 1 minute of latitude) apart and are parallel but transects in other areas may be 2 or 5 miles apart.  Transects that we are following now are located on the shelf and are perpendicular to the coastline.  Transects in inlets and bays may run differently and may even zigzag.

OD Current Cruise

Leg 3 left from Kodiak and is moving eastward for the survey.
Photo courtesy of NOAA

If fish are located through acoustics, the ship will break transect (a mark is made on the map) and the ship will circle around and a sample of the population is taken by trawling.  The population of pollock can then be mathematical calculated.  After trawling, the ship will return to the break and continue along the transect line.

 

This afternoon, we were working smaller transect lines near Amatuli Trench that were 6 miles apart.  It is an area that has had good pollock catches.  Just when we were going to fish, a pod of fin whales was spotted in the area.  So we moved to another area and hauled in quite the catch of Pacific Ocean perch.

POP Haul

After fish are caught they are processed in the fish lab. Here we are processing the Pacific Ocean perch.

It is hopeful that the Oscar Dyson will finish a transect line by nightfall and then the ship can be at the next transect by sunrise.  This maximizes the time looking for fish and trawling.

Personal Log:

I am settling into life on the Oscar Dyson and have established a routine that will support my night shift (4 pm to 4 am).  So how do I spend 24 hours on the ship?

I wake up around 11:45 in the morning to be able to eat lunch that is served only between 11:00 and 12:00.  Because of the shift schedules, some people are bound to miss one or more of the meals.  I miss breakfast because I am sleeping.  We are able to request a plate of food be saved for later.

Between the end of lunch and the start of my shift, there are several things that I can do.  The weather has been very nice and so I often go on deck to soak up the sun and whale watch.

Whale watching

Can you spot the fin whales?

I may need to do laundry as my clothes start to smell fishy.

Laundry Room

We are lucky to have a laundry room on board. It meant I did not have to bring many clothes.

I will also workout in one of the two gyms.  The gym at the back of the boat can’t be used when trawling because of the high noise level.  There is a rower, two exercise bikes, two treadmills, a cross trainer, mats and weights.  I got lucky and someone installed a makeshift pull up bar.

Front exercise room

This is the exercise room towards the bow of the ship.

Back Exercise Room

This is the exercise room toward the stern of the ship.

There is also a lounge where I can read or watch DVDs.  Some of the movies are still in theaters.

Lounge

The lounge for reading and watching movies.

An hour before my shift starts, I read and take a short nap.  Then, I grab a cup of coffee at 4 pm as my shift starts.  I listen as the day shift fills in the evening shift about the happenings of the last 12 hours.

During my shift, there are several things that I may do.  If we have fished, there will be pollock and other organisms to process.

Processing pollock

Here Jodi, Kirsten and I are processing the pollock by determining their sex. Then, they will be measuresd weighed and their otoliths removed.

After processing, we need to clean up the fish lab which involves spraying down everything include ourselves with water to remove scales and slime.

I also keep an eye on the acoustic monitors, to see what I can recognize.  Paul and Darin are always willing to answer my questions (even the ones I already asked).

Acoustics Screens

The four screens of acoustic data. From these screens, Paul will determine whether to fish.

I may look at trawl camera footage or observe camera drops.  Drop Camera

I also have time to work on my blog.

Work Space

I have set myself up an area in the “Cave” to write my blog.

Dinner is served at 5 pm but the mess is always open and is filled with snacks such as sandwich fixings, ice cream, yoghurt, a salad bar and pop tarts.

Mess

Go to the mess for meals and snacks.

Whenever I get hungry at night, I just head for the mess.  It is a time that I am able to chat with the crew and NOAA Corps as they come in for snacks too.

At 4 am, I make it a point to head directly to my stateroom and go to sleep.  The room has a window but I can close the curtains on the portlight (window) and around my bed.

Stateroom

Since I work until 4 am, I close the curtains on the window and bed to help me sleep. The bottom bunk is mine.

There are no weekends out here.  Everyone works 7 days a week for the duration of the cruise.

Did You Know?

Usually fin whales show only their back as they surface for air.  Check out my video clip and see if you can spot the whale.  It wasn’t too close.

fin whale

Here is that fin whale closer up.

Melissa George: Do You Hear What I Hear? July 28, 2013

NOAA Teacher at Sea
Melissa George
Aboard NOAA Ship Oscar Dyson
July 22 – August 9, 2013

Mission:  Pollock Survey
Geographical Area of Cruise:  Gulf of Alaska
Date:  Sunday, July 28, 2013

Current Data From Today’s Cruise

Weather Data from the Bridge 
Sky Condition:  Cloudy
Temperature:  14° C
Wind Speed:  4 knots
Barometric Pressure:  1025.1 mb
Humidity:  90%

Sun and Moon Data 
Sunrise:  5:57 am
Sunset:  10:34 pm

Moonrise:  11:52 pm  (July 27, 2013)
Moonset:  2:35 pm

Geographic Coordinates at 

Latitude:  59° 53.3′ N
Longitude:  149° 00.0′ W

The ship’s position now can be found by clicking:  Oscar Dyson’s Geographical Position

False Point on Kenai Peninsula (viewed this morning through the fog)

False Point on Kenai Peninsula (viewed this morning through the fog)

Science and Technology Log

How do scientists use acoustics to locate Pollock (and serendipitously other ocean creatures)?

Scientists aboard the NOAA Research Vessel Oscar Dyson use acoustic, specifically hydroacoustic data, to locate schools of fish before trawling.  The trawl data provide a sample from each school and allow the NOAA scientists to take a closer look by age, gender and species distribution.  Basically, the trawl data verify and validate the acoustics data.  The acoustics data, collected in the Gulf of Alaska in systematic paths called transects, combined with the validating biological data from the numerous individual trawls, give scientists a very good estimate for the entire Walleye pollock population in this location.

This screen is showing the echogram from the EK 60 echosounder during a trawl at 83.13 meters.  The red line in the middle of the screen is the ocean floor.  The colorful spikes above the red line indicate “backscatter” that is characteristic of capelin, a small fish that pollock feed on.

This screen is showing the echogram from the EK 60 echosounder during a trawl at 83.13 meters. The red line in the middle of the screen is the ocean floor. The colorful spikes above the red line indicate “backscatter” that is characteristic of capelin, a small fish that pollock feed on.

Hydroacoustics  (from Greek words: hydro meaning “water”  and  acoustics meaning “sound”) is the study of sound in water.  Sound is a form of energy that travels in pressure waves. In water, sound can travel great distances without losing strength and can travel fast, roughly 4.3 times faster in water than in air (depending on temperature and salinity of the water).

Click on this picture to see how sound travels from various ocean creatures through water. (Photo from sciencelearn.org)

Click on this picture to see how sound travels from various ocean creatures through water. (Photo from sciencelearn.org)

The Oscar Dyson has powerful, extremely sensitive, carefully calibrated, scientific acoustic instruments or “fish finders” including the five SIMRAD EK60 transducers located on the bottom of the centerboard, the SIMRAD ME70 multibeam transducer located on the hull, and a pair of SIMRAD ITI transducers on the trailing edge of the centerboard.

Image of acoustic instruments on the Oscar Dyson.  (Photo courtesy of NOAA Teacher at Sea Program)

Image of acoustic instruments on the Oscar Dyson. (Photo courtesy of NOAA Teacher at Sea Program)

This “fish-finder” technology works when transducers emit a sound wave at a particular frequency and detect the sound wave bouncing back (the echo) at the same frequency.  When the sound waves return from a school of fish, the strength of the returning echo helps determine how many fish are at that particular site.

The green ship’s transducer is sending out sound waves towards the fish.  The waves bounce back echoes towards the ship that are received by the transducer.  (Photo courtesy of Oracle Thinkquest)

The green ship’s transducer is sending out sound waves towards the fish. The waves bounce back echoes towards the ship that are received by the transducer. (Photo courtesy of Oracle Thinkquest)

Sound waves bounce or reflect off of fish and other creatures in the sea differently.  Most fish reflect sound energy sent from the transducers because of their swim bladders, organs that fish use to stay buoyant in the water column.  Since a swim bladder is filled with air, it reflects sound very well.   When the sound energy goes from one medium to another, there is a stronger reflection of that sound energy.  In most cases, the bigger the fish, the bigger the swim bladder; the bigger the swim bladder, the more sound is reflected and received by the transducer.  The characteristic reflection of sound is called target strength and can be used to detect the size of the fish. This is why fish that have air-filled swim bladders show up nicely on hydroacoustic data, while fish that lack swim bladders (like sharks) or that have oil or wax filled swim bladders (like Orange Roughy), have weak signals.

The above picture shows the location of the swim bladder.  (Photo courtesy of greatneck.k12.ny.us)

The above picture shows the location of the swim bladder. (Photo courtesy of greatneck.k12.ny.us)

These reflections of sound (echoes) are sent to computers which display the information in echograms.  The reflections showing up on the computer screen are called backscatter.  The backscatter is how we determine how dense the fish are in a particular school.  Scientists take the backscatter that we measure from the transducers and divide that by the target strength for an individual and that gives  the number of individuals that must be there to produce that amount of backscatter.  For example, a hundred fish produce 100x more echoes than a single fish.  This information can be used to estimate the pollock population in the Gulf of Alaska.

The above picture shows a computer screen with dense red “backscatter” characteristic of large amount of fish. The yellow lines above and below the backscatter show the location of the trawl lines.

The above picture shows a computer screen with dense red “backscatter” characteristic of large amount of fish, most likely pollock. The yellow lines above and below the backscatter show the location of the trawl lines.

Personal Log: 

Safety

Safety Announcements Don the Walls of the Oscar Dyson

Safety Announcements Don the Walls of the Oscar Dyson

Continuing with Maslow’s hierarchy of needs, I will continue up the pyramid  (see below) and discuss some ways that the basic need of safety is  met on the ship.  The safety and security of all staff (as well as sea animals we encounter) are top priority on the Oscar Dyson.   There are constant reminders of  this priority during ship life.
A Version of Maslow's Hierarchy of Needs

A Version of Maslow’s Hierarchy of Needs

Safety Drills

On the first day of our travel,  before the Oscar Dyson was far from port at Kodiak,  we had three drills.  The fire drill and man overboard drill required me to report to the conference room and meet up with the rest of the science team.  Patrick, the lead scientist, then reported that we (the scientist team) were all accounted for.  The crew had more complex tasks of deploying a small boat and retrieving “the man overboard”.

The other drill was the abandon ship drill.  On the ship, every person is assigned to a life boat (mine is Lifeboat 1).  When the drill commenced, I reported to my muster, the portside of the trawl deck, with survival gear:  jacket, hat, survival suit and life preserver.  We will have drills weekly at anytime.

Abandon Ship Crew Assignments

Abandon Ship Crew Assignments

Safety Gear
When working in the lab, the scientists wear orange slickers, boots, and gloves, not only to keep clean, but to protect us from anything that might be dangerous (fish spines, jellyfish tentacles, and so on).  When on deck, we must wear hardhats (to protect from falling objects from the crane or trawl) and life preservers like the rest of the crew.
Gloves, a Must in Fish Lab!

Gloves, a Must in Fish Lab!

Water Tight Doors
Watertight doors are special types of doors found on the ship which prevent the flow of water from one compartment to other during flooding or accidents. These doors are used onboard in areas, such as the engine room compartment,  science and acoustics labs, and control bridge, where chances of flooding are high.
Water Tight Door on Bridge

Water Tight Door on Bridge

These are just a few examples of how safety is emphasized on the ship.  There are reminders in one’s line of vision constantly.
Safety, Everyone's Responsibility

Safety, Everyone’s Responsibility

Did You Know?

There are various seafarer or crew positions on the Oscar Dyson.  A ship’s crew can generally be divided into three main categories: the deck department, the engineering department, and the steward department.  Rob and Greg are members of the deck department; both men hold Merchant Mariner Credentials as “Able Bodied Seamen” or ABS.  Rob is from Boston, Massachusetts and went to school for seamanship in Fairhaven, MA.  He considers his NOAA position as a good job with a good income, but his main profession is lobstering which he does on the open sea when he is not working for NOAA.  Rob says, “The ocean is in my blood” and always wanted to work on it.   Greg, on the other hand, chose to be a Merchant Mariner after a voyage at sea.  He moved to Texas from Louisiana in his 20′s, went fishing for the first time, and got seasick.  He considered battling seasickness a challenge, and thus pursing seamanship as a career.  In his free time he is a free-lance photographer and journalist.  Below are some pictures of Greg and Rob on the job.  Notice they are always wearing their safety gear.
Greg and Rob Bringing in the Trawling Net

Greg and Rob Bringing in the Trawling Net

Greg and Rob, Preparing for a Camera Drop

Greg and Rob, Preparing for a Camera Drop

Something to Think About: 

Since I will begin teaching Zoology later in August, I have decided to highlight some of the animals that the scientist team has found in our trawls.  Today’s feature will be one of the simplest multicellular animal families, the Porifera.  Porifera is a word formed from combining the Latin words porus which means “passage-way” and fera meaning “bearing.”  Porifera, commonly referred to as sponges, have tiny pores in their outer walls that filter water to get nutrients.  

Various Porifera (Sponges) from a Bottom Trawl

Various Porifera (Sponges) from a Bottom Trawl

Teacher (me) Demonstrating How Water Flows out the Osculum (opening) of a Poriferan

Teacher (me) Demonstrating How Water Flows out the Osculum (opening) of a Poriferan

To learn more about the Porifera Family, click the Porifera on the picture below, and stay tuned for further exploration of this animal Tree of Life.

Tree of Life:  Can you spot  the Poriferan?

Tree of Life: Can you spot the Poriferan?

Melissa George: Crossing the Line, July 25, 2013

NOAA Teacher at Sea
Melissa George
Aboard NOAA Ship Oscar Dyson
July 22 – August 9, 2013

Mission:  Pollock Survey
Geographical Area of Cruise:  Gulf of Alaska
Date:  Thursday, July 25, 2013

Current Data From Today’s Cruise 

Weather Data from the Bridge (at 6:00 am Alaska Daylight Time)
Sky Condition:  Fog
Temperature:  12° C
Wind Speed:  11 knots
Barometric Pressure:  1017.5 mb
Humidity:  87%

Sun and Moon Data
Sunrise:  5:51 am
Sunset:  10:40 pm

Moonrise:  10:57 pm (July 24, 2013)
Moonset:  10:37 am

Geographic Coordinates (at 6:00 am Alaska Daylight Time)
Latitude:  58° 30.5′ N
Longitude: 148° 47.7′ W

The ship’s position now can be found by clicking:

Oscar Dyson’s Geographical Position

Science and Technology Log

How can you determine the population size of species?  You could count every member of the population.  This would be the most accurate method, but what if the individuals in the population move around a lot? What if the population is enormous and requires too much time to count each individual?   For example, krill is a small crustacean (usually between 1 and 6 cm long) that accounts for 400-500 million metric tons of biomass in the world’s oceans.  Would you want to count all of the krill in the Gulf of Alaska?

Krill (and a Few Capelin)

Krill (and a Few Capelin)

Often, ocean populations of animals are just too large to count.  Sampling, or collecting a manageable subset of the population and using the information gathered from it to make inferences about the entire population, is a technique that ocean scientists use.   There are a variety of ways to sample.

One method is called mark and recapture.   In this method,  one catches individuals from the population, tags them, and releases them in a certain area.  After a set amount of time, an attempt is made to recapture individuals.  Data are compiled from the recaptures and the population is mathematically calculated.  Tuna populations in some areas are monitored this way;  fishermen are required to report any fish that are recaptured.  (Photo courtesy of Western Fishboat Owners’ Association)

Tuna with Tag Locations

Tuna with Tag Locations

Another method is quadrat sampling.  The organisms in a subset area (quadrat) are counted and then the overall population in the entire area is calculated.  For example, in the picture below, one quadrat would be randomly selected and the organisms counted.  From this count the overall population would be extrapolated.  (Photo courtesy of BBC Bitesize Biology)

Quadrat Sampling

Quadrat Sampling

The sampling method used on the Oscar Dyson employs the use of a transect line.  The picture below illustrates the use of a transect line.  On various increments along the transect line, samples of populations are taken.  Imagine the Oscar Dyson’s path  on the sea as the measuring tape and the trawl net is the sampling square.  (Photo courtesy of Census of Marine Life Organization)

Transect Line Sampling

Transect Line Sampling

The overall survey area of the pollock study this summer is the northern Gulf of Alaska between the shore and the continental break.  Within this area transect lines were established.  These are pathways that the Oscar Dyson will travel along and periodically take samples of the fish.

The current set of transects are 25 nautical miles apart and are parallel, but transects in other areas may be 2 or 5 nautical miles apart.  One nautical mile is equal to 1/60 of a degree (or 1 minute ) of latitude. Transects that we are following now are located on the shelf and are perpendicular to the coastline.  Transects in inlets and bays may run differently, perhaps even zigzag.

Screen Shot of Oscar Dyson Transect Line Travel

Screen Shot of Oscar Dyson Transect Line Travel

If fish are located through acoustics monitoring off the transect line,  the ship might break transect (a mark is made on the map), circle around to the desirable position, and collect a sample by trawling.  The population of pollock can then be mathematically calculated from counting the sample.  After trawling, the ship will return to the break and continue along the transect line.

Most days, scientists hope that the Oscar Dyson will finish a transect line by nightfall and then the ship can be at the next transect by sunrise.  This maximizes the time for detecting fish acoustically and trawling to collect samples.

Personal Log: 

In his 1943 paper “A Theory of Human Motivation,” Abraham Maslow, a developmental psychologist, proposed a hierarchy of needs which focus on describing the stages of growth in humans.  The largest, most fundamental needs are at the bottom, and as those are satisfied, individuals are able to progress up the pyramid.  So, I am going to use this diagram (somewhat tongue-in-cheek) to discuss how  basic needs are met on the ship.  In today’s blog, I will begin the discussion at the bottom level (where else?).
A Version of Maslow's Hierarchy of Needs

A Version of Maslow’s Hierarchy of Needs

The bottom layer includes the most basic physiological needs one requires for survival:  food, water, warmth, and rest.  (We might also include exercise in this level).   So, let us begin at the beginning.
Food

Food is available in the galley.  It is planned for and shopped for before the mission.  Chief Steward, Ava, and Second Cook, Adam, do an excellent job preparing and executing delicious, healthy meals at set times during the day (Breakfast: 7 to 8 am, Lunch 11 am to noon, Dinner 5 to 6 pm). Since the staff on the ship are working around the clock, there is always food available (salad bar, cereal, yogurt, peanut butter and jelly sandwiches) if meal time is missed for sleeping.  Below is a photo of the galley.  (What are those neon yellow things on the bottom of the chair legs for, do you think?)

Oscar Dyson Galley

Oscar Dyson Galley

Water

Water is needed for in several capacities on the ship.  The staff on the ship needs potable water to drink and to cook with.  Additionally,  water is needed for washing dishes, bathing, flushing toilets and doing laundry.

To get clean drinking water, we pump the salt water from the ocean into a desalination unit (a distiller). The distilled water is then sent to a 10,000 gallon holding tank. When water is needed, it is pressurized so that it will move to the faucets, drinking fountains, showers, and so on.

Water is also needed on the ship in the lab and on the deck to clean up after the catch is hauled in and processed.   The water used here is salt water and is pumped onto the boat directly from the ocean.

Rest

Half of the staff on the ship is working around the clock; the other half is resting.   For the science staff, there are two shifts, a morning shift (4 am to 4 pm) and an evening shift (4 pm to 4 am).  The shifts are staggered at these hours so that the evening shift will be able to share two meals with the rest of the staff (usually lunch and dinner).  In most cases, two people share a stateroom:  one works days and the other works nights.  Because the quarters are close on a ship, this gives each person some time alone in the room to sleep, bathe, and take care of other personal needs.  A stateroom consists of a bunk bed, a desk, two lockers, and a bathroom/shower.  Below are some photos of the stateroom that I share with my roommate, Abby.  (Note:  Because rooms are small and space is shared, it is not advisable to bring a large purple suitcase that won’t fit inside one’s locker.)

Oscar Dyson Stateroom

Oscar Dyson Stateroom

Oscar Dyson Stateroom Bath

Oscar Dyson Stateroom Bath

Exercise

There are two workout areas on the ship.  One workout area has a treadmill, an elliptical machine, a bike, and a yoga mat; the other has a treadmill, a rowing machine, and some free weights.  There are limited walking spaces on the ship, so these machines provide a way to stretch one’s legs, so to speak.

Oscar Dyson's Exercise Room

Oscar Dyson’s Exercise Room

 
Did you Know?
With a bachelor’s degree in science, math, or engineering and a 6 month training program at the US Coast Guard Academy in New London, CT, one can serve the United States as a member of the National Oceanic and Atmospheric Administration’s Commissioned Officer Corps (NOAA Corps).  Members of the NOAA Corps serve as operational experts, taking researchers to sea and helping to generate environmental intelligence.  My roommate, Abby, serves as a member of the NOAA Corps.
Abby Controlling the Oscar Dyson

Abby Controlling the Oscar Dyson

This is Abby’s second cruise with the NOAA Corps.  She has a bachelor’s degree in chemistry and just completed her NOAA officer basic training.  One of her tasks is to be ready to deploy specific measures in case of a fire on board.  Below, she is reviewing all of the locations on the Oscar Dyson with fire response equipment.  For more information on NOAA Corps, click on the link.
Abby Locating Fire Response Equipment

Abby Locating Fire Response Equipment

Something to Think About
Knowing geography is essential to various positions on the ships such as scientific exploration and navigation.  Many types of maps are seen on board, for example, computer generated bathymetric maps show the contour and depth of the ocean.  Equally valuable are the “old school” tools (paper maps, compasses, straight edges, and pencils) used to plot the ship’s course.
Navigation Tools

Navigation Tools

Plotting Transects

Plotting Transects

Fun Fact

Etymology is the study of the origin of words.  Many of the words in science originate from ancient languages such as Greek or Latin.   For example, the word etymology comes to us from two Greek words: etymon meaning “the true sense of a word combined with  logia meaning “doctrine, study.” Combining these two roots gives us “the study of the true sense of words,” which can be said to be the meaning of the word etymology.

Here are some root words I came across today all originating from Greek words:

zoo-from zoion meaning “animal”

phyto-from phyto meaning “plant”

plankton-from planktos meaning “drifting” or “wandering”

vorous-from vorous meaning “eating”

In the blogs thus far, I have discussed two species:  walleye pollock and one of their prey, krill.  Krill are classified as zooplankton, literally “animals that drift. ” Krill eat phytoplankton, or “animals that drift.”  Pollock are considered to be zooplanktivorous, or “drifting animal eaters.”  An award winning short video explaining The Secret Life of Plankton can be viewed by clicking on the link.

Melissa George: Yakutat or Bust, July 24, 2013

NOAA Teacher at Sea
Melissa George
Aboard NOAA Ship Oscar Dyson
July 22, – August 9, 2013

Mission:  Pollock Survey
Geographical Area of Cruise:  Gulf of Alaska
Date:  Wednesday, July 24, 2013

Current Data From Today’s Cruise

Weather Data from the Bridge (6:00 am Alaska Daylight Time)
Sky Condition: Scattered Clouds
Temperature: 12º C
Wind Speed: 12 knots
Barometric Pressure:  1017.2 mb
Humidity: 93%

Sun and Moon Data
Sunrise:  5:40 am
Sunset: 10:38 pm

Moonrise:  10:36 pm (July 23, 2013)
Moonset:  9:11 am

Sunrise on July 24, 2013

Sunrise on July 24, 2013

Geographic Coordinates  (6:00 am Alaska Daylight Time)
Latitude: 58º 30.5’ N   Longitude:  150º 53.9’ W

The ship’s position now can be found by clicking:

Oscar Dyson’s Geographical Position

Science and Technology Log

This blog is titled Yakutat or Bust because there is a great deal of hope to complete the survey around Yakutat, Alaska in the southeast.  On the map below, the green mark is our position in the water near Kodiak Island (the survey actually began a bit west near the islands of Four Mountains) and the red is our final destination of Yakutat Bay.  (Photo courtesy of GoogleEarth)

Gulf of Alaska Map

Gulf of Alaska Map

http://www.msc.org/track-a-fishery/fisheries-in-the-program/certified/pacific/gulf-of-alaska-pollock

The purpose of this cruise is to survey the walleye pollock (Theragra chalcogramma) in the Gulf of Alaska. Pollock is a significant fishery in the United States as well as the world.  Pollock, a certified sustainable fishery, is processed into fish sticks, fish patties and imitation crab.  Last year, about 3 million tons of pollock were caught in the North Pacific.  The scientists on board will collect data to determine the pollock biomass and age structure.  These data are used with results from other independent surveys to establish the total allowable pollock catch.

Our First Pollock Catch

Our First Pollock Catch

According to the Alaska Fisheries Science Center, typically pollock grow to about 50 cm and weigh about .75 kg.  They live in the water column and feed on small krill, zooplankton, and small fish as they grow.  As they age they will eat other pollocks.  Sexual maturity is reached around age 4.  Spawning and fertilization occurs in the water column in early spring.  The eggs stay in the water column and once hatched are part of the zooplankton until they are free swimming.

The general process used to catch the pollock involves multiple parts.  I will break down those steps in a series of blogs.  But basically, acoustics are used to locate fish in the water column.  Once the scientists have located the fish along the transect (transects are the paths that the ship will travel on so the scientists can collect data), the Oscar Dyson sets out a trawl equipped with a camera.  The trawl is brought in and data from the catch is documented.  And then the ship continues on.

Bringing in the Aleutian Wing Trawling (AWT) Net

Bringing in the Aleutian Wing Trawling (AWT) Net

Trawling is usually completed only during daylight hours.  Fortunately the sun does not set here in Alaska right now until after 10 pm.  When it is dark, work aboard the Oscar Dyson continues.  For example, one of the scientists is documenting the sea floor with a drop camera.  She is looking at life that is there as well as potential threats to the trawl nets for the bottom trawl surveys.

Preparing the Drop Camera

Preparing the Drop Camera

Questions to Think About:

  • How do scientists use acoustics to locate pollock?
  • How are the transects locations determined?
  • How are pollock and the rest of the catch processed?
  • What information is retrieved from the trawl camera and other types of sensors?
  • What is a bottom trawl and how is it different from a mid-water trawl?
  • What types of careers are available on the Oscar Dyson?

Personal Log: 

Before we left Kodiak Island on July 22, I was able to spend a day exploring alone and with some of the members of the science team while the crew prepared the ship.  The town of Kodiak is one of seven communities on the island and the central location for all commercial transportation on and off the island either by airplane or ferry boat.  

Flying into the Kodiak Airport

Flying into the Kodiak Airport

Kodiak is the ancestral land of the Sugpiaq, native Alaskans of the Alutiq Nation, who subsisted by hunting, fishing, farming, and gathering.  Russian explorers were the first outsiders to visit the island, and under Grigory Shelikof, established a settlement in 1792 that became the center of Russian fur trading.  Following the 1867 Alaska Purchase from Russia, the island and the rest of Alaska became the 49th of the United States in 1959.  Russian influence is still apparent on Kodiak:  the Shelikof Strait separates Kodiak Island from mainland Alaska and the Holy Resurrection Russian Orthodox Cathedral holds a full house on Sunday mornings.

Holy Resurrection Russian Orthodox Church

Holy Resurrection Russian Orthodox Church

Flora and fauna are abundant in this beautiful location.  On a short hike, I was able to sample the delicate salmonberries; fear the beautiful, yet invasive and poisonous hogweed; and watch a gorgeous sunset.

Delicate Salmonberries

Delicate Salmonberries

Invasive Hogweed

Invasive Hogweed

Sunset on Kodiak Island

Sunset on Kodiak Island

Did You Know?

The background of scientists on the Oscar Dyson varies; however, most have a strong affinity for the ocean and spent a lot of time outdoors exploring nature and playing with various critters as children. Kirsten, for example, is a post-doctoral researcher funded by the National Research Council.  She has a BS degree in Marine Biology from Roger Williams University in Rhode Island as well as MS and PhD degrees in Oceanography and Coastal Sciences with a concentration in Fishery Science from Louisiana State University in Baton Rouge.  She came aboard the ship to develop a time series of krill distribution in the Gulf of Alaska and to relate that to other species of importance such as pollock.

Kirsten's Krill Collection

Kirsten’s Krill Collection

Something to Think About: 

STEM (Science, Technology, Engineering, and Math) are not the only important subjects to know to work on the Oscar Dyson.  All three crews on the ship (NOAA Corp, Deck/Fishery Crew, and Scientists) use writing every day. Below are pictures of two log books: one records Weather Data by the NOAA Corp and the other Scientists’ notes.

NOAA Corp Weather Log

NOAA Corp Weather Log

Scientists' Trawling Log

Scientists’ Trawling Log

Fun Fact:

Alaska’s official flag is based on a design by Benny Benson, a thirteen year old boy.  It was submitted in a territory-wide contest for schoolchildren sponsored by the American Legion in 1926.  Benny Benson chose the background color of the flag to represent both the blue sky and the forget-me-not. The Alaska legislature later named the forget-me-not as Alaska’s official state flower.  The flag inspired the state song, the lyrics of which are seen in the picture below.  Marie Drake wrote the lyrics, and Elinor Dusenbury composed the song.

A Popular Hang Out on Board

A Popular Hang Out on Board

Julia Harvey: Yakutat or Bust, July 23, 2013

NOAA Teacher at Sea
Julia Harvey
Aboard NOAA Ship Oscar Dyson (NOAA Ship Tracker)
July 22 – August 10, 2013 

Mission:  Walleye Pollock Survey
Geographical Area of Cruise:  Gulf of Alaska
Date:  July 22, 2013

Weather Data from the Bridge: (7/23/13 at 11 pm)
Wind Speed = 13 knots
Air Temperature = 12.7 C
Humidity = 93%
Barometric  Pressure = 1017 mb

Science and Technology Log: 

There is a great deal of hope to complete the survey, which is supposed to end near Yakutat in the southeast of Alaska.  It began near the islands of Four Mountains during leg 1. We are on leg 3, the final leg this summer.  Leg 3 began in Kodiak. Three Legs of the Survey

Gulf of Alaska Map

Kodiak Island is the green marker and Yakutat Bay is the red.

The purpose of this cruise is to survey the walleye pollock (Theragra chalcogramma) in the Gulf of Alaska. Pollock is a significant fishery in the United States as well as the world.  Pollock is processed into fish sticks, fish patties and imitation crab.   Last year, about 3 million tons of pollock were caught in North Pacific.  The scientists on board will collect data to determine the pollock biomass and age structure.  These data are used with results from other independent surveys to establish the total allowable pollock catch.

Walleye Pollock

Walleye Pollock from the Latest Trawl

According to the Alaska Fisheries Science Center, pollock can grow to about 3 ½ feet and weigh about 13 lbs.  More typically the pollock are approximately 50 cm (20 in) and weigh .75 kg  (1.7 lbs). They live in the water column and feed on krill, zooplankton and other crustaceans.  As they age they will eat juvenile pollock and other small fishes such as capelin, eulachon and herring as well.  Sexual maturity is reached around age 4.  Spawning and fertilization occurs in the water column in early spring.  The eggs stay in the water column and once hatched are part of the zooplankton until they are free swimming.

The general process used to catch the pollock involves multiple parts.  I will break down those steps in a series of blogs.  But basically, acoustics are used to locate fish in the water column.   Once the scientists have located the fish along the transect (transects are the paths that the ship will travel on so the scientists can collect data), the Oscar Dyson sets out a trawl equipped with a camera.  The trawl is brought in and data from the catch is documented.  And then the ship continues on.

Trawling Nets on the Oscar Dyson

Trawling Nets on the Oscar Dyson

Fish Lab on the Oscar Dyson

Fish Lab on the Oscar Dyson

Trawling is usually completed only during daylight hours.  Fortunately the sun does not set here in Alaska right now until after 10 pm.  When it is dark, work aboard the Oscar Dyson continues.  Jodi is documenting the sea floor with a drop camera.  She is looking at life that is there as well as potential threats to the trawl nets for the bottom trawl surveys.

Questions:

  • How do scientists use acoustics to locate pollock?
  • How are the transects locations determined?
  • How are pollock and the rest of the catch processed?
  • What information is retrieved from the trawl camera?
  • What is a bottom trawl and how is it different from a mid-water trawl?

Personal Log: 

We left Kodiak at 1 pm on July 22 heading southwest.

Koodiak Island

Goodbye Kodiak Island

We had 8 hours of travel time before we would reach our first transect.  But before we got too far away from Kodiak, we needed to practice the three drills for the safety of everyone.  The fire drill and man overboard drill required me to report to the conference room and meet up with the rest of the science team.  Patrick, the lead scientist, then reported that we were all accounted for.  The crew had more complex tasks of deploying a small boat and retrieving “the man overboard”.

The other drill was the abandon ship drill.  We are assigned to a lifeboat and I reported to my muster on the portside of the trawl deck with my survival suit, long sleeve shirt, hat and life preserver.  We will have drills weekly at anytime.

For the last two days I have been becoming oriented to the ship and to my responsibilities to the science team.  Jodi, a post doctorate from Juneau gave us a tour of the boat on the first day we arrived in Kodiak.  I then practiced finding all of the key parts of the ship I will need to access.  I now am confident that I can find my stateroom, the mess, laundry room, both exercise spaces, acoustics lab, and fish lab.  For other sites, I wander around for a while until I locate it.

A Door

Many doors on the the Oscar Dyson are water tight. They must be latched after passing through them.

My first shift began at 4 pm on Monday.  There are two shifts for scientists.  Some work 4 am to 4 pm and the others work 4 pm to 4 am.  I work the night shift.  I never drink coffee but today I realized that I needed it.  My shift includes scientists Paul, Jodi and Darin as well as a survey tech named Vince.  We all share staterooms with people who work the opposite shift.

Science Team in Cave

The night shift science team includes Paul, Darin and Jodi (left to right). They monitor the fish in the acoustics lab also known as “The Cave”.

The ocean is very calm but most of us took Bonine (a seasickness medication) anyway to acclimate to the movement.  Hopefully we will be adjusted to the motion before the seas get very rough if it does.  The rocking of the boat does make one very sleepy.

Cruising the Gulf of Alaska

The sea have been very calm for us.

 

Did You Know?

The requirements for joining the NOAA Corps include a bachelor’s degree in science, math or engineering and a 5 month program at the US Coast Guard Academy in New London,  CT.  This is Abby’s second cruise with the NOAA Corps.  She has a bachelor’s degree in chemistry and just completed her NOAA officer basic training.

Something to Think About: 

What is a day in the life aboard the Oscar Dyson like?

 

Melissa George: Contemplating Kodiak, July 20, 2013

NOAA Teacher at Sea
Melissa George
Aboard NOAA Ship Oscar Dyson
July 22–August 9, 2013

Mission:  Alaska Pollock Survey
Geographical Area of Cruise:  Gulf of Alaska
Date:  July 20, 2013

Introductory Blog

Greetings from Lafayette, Indiana, where I recently moved back after spending two years in Washington, D.C. as an Albert Einstein Distinguished Educator Fellow at the National Science Foundation in the Division of Environmental Biology.  In my recent position, I learned of many of the interesting research projects that ecosystem ecologists, population and community ecologists, systematic biologists, and evolutionary biologists are working on in various parts of the world. Beginning this fall, I will be returning to the Lafayette School Corporation to teach Biology and Zoology at Jefferson High School in Lafayette, Indiana.  I am excited to integrate aspects of the research I have learned about into my classroom.

Enhancing my understanding will be the authentic research experience in the  Gulf of Alaska as a  NOAA Teacher at Sea.  I will fly to Kodiak Island and board NOAA Ship Oscar Dyson, a support platform to study and monitor various aspects of the ocean:  environmental conditions,  habitat assessments, and marine mammal, fish, and bird populations.

Map of Kodiak Island

Map of Kodiak Island

This particular mission will be surveying the population of a species of fish called Alaskan pollock or scientifically speaking, Theragra chalcogramma.   These fish belong to the cod family and are one of the United States’ most valuable fisheries; they are typically sold as fish sticks, fish patties, or imitation crab, scallops, or shrimp.  Pollock populations vary from year to year, thus fish surveys, help to enact management practices as well as monitor the effects of climate change.

Ways to Identify the Alaskan Pollock

Ways to Identify the Alaskan Pollock

This adventure is exciting to me for several reasons.  First, growing up on the Pacific Coast in Santa Cruz, California I fell in love with the ocean at a young age.  I realize the importance of respecting the ocean and the ecosystems within it and around it.  Having spent the second half of my life in the Midwest, I have missed its calming effect as well as the wealth of ecological wonders it holds.  I escape to the ocean whenever I have the chance.  Below is a picture of me resting on the beach at Halawa Bay on the east end of Molokai, one of the Hawaiian Islands.

On Beach at Halawa Falls

On Beach at Halawa Falls

Second,  I hope to incorporate what I learn about how ocean scientists monitor various animal populations  into my high school classes.  There are so many aspects to this endeavor, I think my students will be excited to learn about many, if not all, of them.

Fun Fact:

I have four traveling companions.  They are in the photo below.  One of them will be accompanying me on the Teacher at Sea mission.  See if you can find pictures of this traveling companion in future posts and please comment when you do!

My Four Traveling Companions:  Manny, Molly, Mini Me, and Bust of Einstein

My Four Traveling Companions: Manny, Molly, Mini Me, and Bust of Einstein

Julia Harvey: A Dream Revisited/Getting Ready to Sail, July 18, 2013

NOAA Teacher at Sea
Julia Harvey
Aboard NOAA Ship Oscar Dyson (NOAA Ship Tracker)
July 22 – August 9, 2013

Mission: Alaska Walleye Pollock Survey
Geographical Area: Gulf of Alaska
Date: July 18, 2013

 

Julia Harvey

Julia Harvey. Photo by Wilson Garland

 My name is Julia Harvey and I currently teach biology and environmental science at South Eugene High School in Eugene, Oregon.  Eugene is at the southern end of the Willamette Valley and just a short drive from the Pacific Ocean.  I have taken many trips over the coastal range to Florence and the beautiful Oregon Coast.

Oregon Coast

Oregon Coast

And while the weather is not always cooperative, the ocean is always gorgeous.  This last spring I took a group of students on a short marine discovery cruise out of Newport, where NOAA (National Oceanic and Atmospheric Administration) has based their Marine Operations Center for the Pacific.

Marine Operations for the Pacific

Marine Operations Center for the Pacific located in Newport, Oregon
photo courtesy of noaa

It was my dream since 2nd grade to become a marine biologist.  Mrs. Hellwege inspired me to learn more about the ocean as we studied marine mammals.  My career path remained unchanged as I attended Occidental College and spent time on the college’s boat the Vantuna.  I put my academic education on hold after graduating to serve in the Peace Corps.  My passion for the sea continued while I was stationed in the South Pacific on an island in the Kingdom of Tonga.  But as I became a teacher, I realized the perfect career would combine my love for biology and my new love of teaching.  22 years later, I now have to opportunity to revisit my childhood dream.

I learned about the NOAA Teacher at Sea program as I was taking an Oceanic Studies course.  I decided to apply last October because I wished to connect my students directly with current research that is impacting our ocean environment.  I also wanted to learn first hand how oceanic data was being collected since I have been out of the lab setting for quite some time.  I was ecstatic when I learned in February that I was selected to sail.  I am truly honored and appreciate the opportunity to involve my students in oceanic research and to present to them potential oceanic careers.

Oscar Dyson

The ship Oscar Dyson
photo courtesy of noaa

I will be sailing in the Gulf of Alaska aboard the Oscar Dyson and participating in a Walleye pollock fish population survey.  Walleye pollock is the largest fisheries in the United States and one of the largest in the world.  These fish become fish sticks, fish sandwiches and imitation crab.  I am looking forward to learning more about the science involved in assessing a fish population.  What makes fisheries healthy and sustainable?

My bags are packed with clothes, cameras, workouts, books and lots of enthusiasm.  I am excited beyond description.  I will be blogging several times a week and I hope you will continue to follow my journey at sea.

Marla Crouch: I Bid You Adieu, July 14, 2013

NOAA Teacher at Sea
Marla Crouch
Aboard NOAA Ship Oscar Dyson
June 8-26, 2013 
 

Mission:  Pollock Survey
Geographical area of cruise:  Gulf of Alaska
Date: July 14, 2013

Weather Data from the Bridge: as of 1700
Wind Speed 6.02 kts
Air Temperature 52.10°C
Relative Humidity 100.00%
Barometric Pressure 1,024.60  mb

Latitude:  57.16N   Longitude: 151.78W

Science and Technology Log

The 2013 Walleye Pollock Survey extends from the Isles of Four Mountains to Yakutat, Alaska.  As the crow flies that is a distance of 2371 statute miles.  By the time the Oscar Dyson reaches Yakutat the distance traveled will be over three times that distance.  The survey is completed in three segments, called legs; during the first leg of the survey we traveled 3448 nmi.  A nautical mile is longer than a statute mile, 1 nmi is equivalent to 1.15 statute mile.

Map of the Alaskan Coastline

Map of the Alaskan Coastline

When we were surveying the waters around the Shumigan Islands we frequently encountered large schools of juvenile pollock, identified as age 1.   I asked Patrick Ressler, the lead scientist on this leg, if this was a nursery area.  Patrick indicated that the science team would need to go back and review the data collected on previous surveys to determine if there was sufficient evidence to make that determination.  The high number of age 1 pollock is a good sign that the fish stocks are healthy.

In my “Gumbi Marla” blog I talked about NOAA’s Ship Tracker and the transects, or the course, the ship navigates during the survey.  Surveys are completed during daylight hours, as the pollock behave differently at night, by changing the depth at which they swim.  When the acoustics data show a school of pollock that the science team wants to fish the position is recorded and the science team communicates with the Dyson’s bridge officer about when they can safely return to the specific position to trawl the area.  When the bridge crew is ready to leave the current transect they contact the science team, the science team then records the time and the exact position where the Dyson left transect.  After the trawl is completed the Dyson returns to the exact position they left transect to continue the survey.  During night time hours one of the scheduled tasks was to use the camera to review areas of the sea floor that had previously been deemed “untrawlable” as the seafloor was to rocky and would snag or tear the nets.

One type of gas that is trapped in Earth’s lithosphere is methane.  Methane escapes the lithosphere under the seafloor through vents and along fault lines.  The screen shot of the acoustics monitor shows vertical columns believed to be methane.  One theory about the Bermuda Triangle is a massive release of methane that creates a massive bubble.  When the bubble bursts objects in the immediate area are sucked into the momentary void created by the bubble, and swallowed by the sea.

Acoustic image of probable methane seepage.

Acoustic image of probable methane seepage.

Personal Log

Trees, there are trees on Kodiak!  I saw trees for the first time in 18 days, and I realize that I have missed seeing trees.  It’s interesting that the first three people I talk to as we approach the island of Kodiak all ask if I saw the trees.  I guess I’m not the only one that has missed seeing trees.  Sometimes the simplest observation makes the biggest impression.

Thank you to the crew of the Oscar Dyson and Science Team and to NOAA for giving me a phenomenal experience with the Teacher at Sea Program. Many students will benefit from my experiences.  Pictured is the Science Team from Leg 1 of the Pacific Walleye Pollock Survey, from left to right:  Lead Scientist Patrick Ressler, Taina Honkelehto, Kresimir Williams, Rick Towler, Abigail McCarthy, Marla Crouch (that’s me), behind me is Charles Andersen and Mike Gallagher.

Science Team

Science Team

There were so many great experiences; I hope you enjoy the video giving you glimpses into the science, technology, sights and the Oscar Dyson.

 Thanks to everyone that made my experience possible!

Amie Ell: Out to Sea, July 3, 2013

NOAA Teacher at Sea
Amie Ell
Aboard NOAA Ship Oscar Dyson (NOAA Ship Tracker)
June 30 – July 21, 2013

Mission: Alaska Walleye Pollock Survey
Geographical Area: Shelikof Strait
Date: July 3, 2013

Location Data from the Bridge:
Latitude: 154.35.3 W
Longitude: 57.65.65 N
Ship speed: 12  kn

Weather Data from the Bridge:
Air temperature:
Surface water temperature:
Wind speed: 13.01 kn
Wind direction: 271.17
Barometric pressure: 1,008.6 mb

Science and Technology Log:

Yesterday was the first day at sea for this 18 day research cruise.  You should now be able to follow the Oscar Dyson online by visiting the NOAA ship tracking website:  http://shiptracker.noaa.gov/shiptracker.html

ShipTracker Zoom in

The path the Oscar Dyson is taking through Shelikof Strait

The red triangle shows the location of the  Oscar (photo courtesy of NOAA)

The red triangle shows the location of the Oscar Dyson (photo courtesy of NOAA)

Here are some questions I’m getting from my students.

From Kathy H.:

Why is the Pollock so popularly used for our fast food meals and imitation crab? I am thinking it must be plentiful, dense, and mild.

You are correct Kathy! One reason Pollock is used for fast food restaurant and imitation crab is that it is a mild fish. Another reason would be that  when cooked it has the desired characteristics of being white, dense, and flakey.  Also, the pollock is higher in oil counts which make this fish more flavorful than others.

Pollock waiting to be measured.

Pollock waiting to be measured.

From Lorie H.: Do you know if the Pollock are fished in other areas besides Alaska?

The Alaskan Pollock that the scientists are studying here on the Oscar Dyson are commonly found in the Bering Sea, Gulf of Alaska, and the Russian Sea of Okhotsk.  Another type of pollock is the Atlantic pollock. These are not fished at the same level as the Alaskan pollock.  While about 11 million pounds of the Atlantic pollock are fished each year around 1 million tons of Alaskan Pollock are fished in a year.      

Me waiting for the fish to come in.

Me waiting for the fish to come in.

Personal Log:

Since many of you asked to hear more about what it is like to live on the Oscar Dyson, the following will give you an idea of  some of the amenities on board the Oscar Dyson.

I get top bunk!

I get top bunk!

Head

The head (bathroom)

The Oscar Dyson has 21 state rooms.  I share this room with another scientist.  Our stateroom consists of a porthole (window), a set of bunks (I have top bunk), desk, telephone, refrigerator, and a set of lockers.  My roommate and I are on opposite watches.  The rooms are very small and quickly become crowded when just two people are in the room.   She works from 4 in the morning to 4 in the afternoon, while I work from 4 in the afternoon to 4 in the morning.  Each stateroom has its own head (bathroom) with a toilet, sink, and shower.

There are several common areas as well.  Across the passage way from me is the lounge.  This is a very comfortable room with a couch, large chairs, many books, games, and a large screen TV with a DVD player. Another popular common area is the galley.  This popularity probably can be attributed to the fact that the stewards on the ship are excellent cooks.

The Galley

The Galley

Did You Know:

pollock_otolith

A pollock otolith

Fish have tiny bones in their heads known as otoliths.  This bone is found in the ear of the fish.  These bones have circular rings and can help scientists determine the age of a fish.   Do you remember learning about other rings in nature that can be used to determine age?  Reply below if you can think of one.

For Next Time:  The Labs on the Oscar Dyson

Amie Ell: Preparing for an Adventure, June 26, 2013

NOAA Teacher at Sea
Amie Ell
Aboard NOAA Ship Oscar Dyson (Ship Tracker)
June 29 — July 18, 2013

Mission: Walleye Pollock Survey
Geographical Area: Kodiak, Alaska

Date: June 26, 2013

Personal Log

Amie Ell, NBCT Columbia High School White Salmon, WA

Amie Ell, NBCT
Columbia High School – White Salmon, WA

Hello everyone!  Thank you for visiting my blog.  I hope you continue to follow my journeys this summer.  Please allow me to introduce myself. My name is Amie Ell.  I am a teacher of sciences and mathematics at Columbia High School in White Salmon, WA. I live across the beautiful Columbia River in The Dalles, Oregon with my husband and two daughters.  I have taught for 10 years, 8 of them with my wonderful CHS clan!  I teach Physical, Earth, and Space Sciences as well as Algebra to primarily 9th graders.

This Friday I will fly to Kodiak to meet the crew of the Oscar Dyson and begin my adventure.  I was elated to learn that I had been chosen to be a part of the NOAA Teacher at Sea program and assigned to the Oscar Dyson. I had hoped that I would be given the opportunity to visit Alaska.   I have traveled to and explored many tropical ocean waters, but this will be my first Alaskan experience.  The commanding officer tells me that “…This Gulf of Alaska Pollock survey is one of the best ways to see the remote coastline of Alaska and to experience one of its foundation industries from a research perspective…”

The NOAA Ship Oscar Dyson (photo courtesy of NOAA)

The NOAA Ship Oscar Dyson (photo courtesy of NOAA)

I have learned that I will be helping with a survey of the Alaskan walleye pollock.  The main source of fish for many fast food fish sandwiches,  fish sticks, and even your imitation crab meat is the walleye pollock.  It is very important for scientists to maintain a careful watch on these fish so that their populations are not decimated by overfishing.

Please leave questions and comments for me.  I would love to hear from you all.  I know I will be missing home, friends, family, and all “my kids” at Columbia High.  Check back often.  I will always try to investigate and answer any questions you have.  Let’s begin our communication with a little survey:

Did You Know?  NOAA’s Pacific Marine Operations Center is located in Newport, OR.  Nine ships are serviced here including the Oscar Dyson.  Many of you have visited the Oregon Coast Aquarium in Newport.  Next time you are there, see if you can spot this NOAA hub.

NOAA Pacific Marine Operations in Newport, OR.  (photo courtesy of NOAA)

NOAA Pacific Marine Operations in Newport, OR. (photo courtesy of NOAA)

Marla Crouch: Cameras and the Shark, June 22, 2013

NOAA Teacher at Sea
Marla Crouch
Aboard NOAA Ship Oscar Dyson
June 8-26, 2013 
 

Mission:  Pollock Survey
Geographical area of cruise:  Gulf of Alaska
Date: June 22, 2013

Weather Data from the Bridge: as of 2000
Wind Speed 20.02 kts
Air Temperature 8.4°C
Relative Humidity 96.00%
Barometric Pressure 995.9 mb

Latitude:  55.86N   Longitude: 159.17W

Science and Technology Log

Cam Trawl, Critter Cam, Drop Cam, Trigger Cam (dubbed “the contraption”), and a camera that will be used on Acoustic Vessel of Opportunity (AVO) project, are different camera systems scientists are testing and using on this leg of the pollock survey to help monitor the biology in the region. Each camera is designed for a specific application.

Cam Trawl is attached immediately before the codend of a survey midwater trawl net, and takes pictures of the fish swimming by.  Cam Trawl allows scientists to look at what depth the fish were captured, and use this information to help identify specific fish echoes on the sonar graphs.  In one of our trawls, we were able to see pictures of a female Salmon Shark entering the net.  She was quickly measured and released.

Picture of a female Salmon Shark taken be the Cam Trawl camera.  Picture provided by NOAA

Picture of a female Salmon Shark taken be the Cam Trawl camera. Picture provided by NOAA

Critter Cam is attached to the survey net on the Oscar Dyson and takes pictures of little critters, like krill and different types of plankton, that are too small to be captured in a trawl net.

Pictured from left to right.  Macrozooplankton krill, ctenophores, small jellyfish, young of the year pollock,  juvenile smelt

Pictured from left to right. Macrozooplankton krill, ctenophores, small jellyfish, young of the year pollock,
juvenile smelt.  Pictures provided by NOAA.

The Drop Cam is a tethered stereo camera that is lowered to take pictures of the sea floor.  This instrument is going through a series of sea trials on this cruise, where the lights, exposure, and battery life are all being tested and fine tuning adjustments are being completed.  Battery life is a concern, as both the cameras and the lights require energy to operate, and the scientists want to maximize the amount of time data is being collected .  In order to conserve energy a depth sensor trip switch was added that turns the system on at 15 m depth. This addition allows the camera to continually take 10 pictures a second for a longer time on the sea floor.  After this cruise the Drop Cam heads west to help survey the coral reefs west of the Islands of Four Mountains were we started our pollock survey heading east.  Yes, there is coral in the cold waters of the Gulf of Alaska and the Berring Sea.

Octopus

Octopus picture provided by NOAA

Brittle stars

Brittle stars.  Picture provided by NOAA.

Juvenile Yelloweyed Rockfish

Juvenile Yelloweyed Rockfish.

Trigger Cam, which the Dyson’s crew has dubbed “the contraption”, is attached to an anchor and lowered to the sea floor.  The anchor we are using is a sablefish pot (a trap that is normally used to catch fish on the bottom), which has a buoy line attached, and the buoy marks the location of the camera on the surface.  There are six Trigger Cams in development; the concept is that the cameras are deployed in a series a few nautical miles apart and left for 3 to 4 hours before retrieving.  To conserve energy, this piece of equipment is designed with a motion sensor.  An infared camera (fish cannot see infared light) runs at very low resolution (produces a blurry picture, as the water is in constant motion). When something, such as a school of Pacific cod, swims by, the motion is detected, camera flashes are triggered and a high resolution (clear) picture is taken.  When the Trigger Cam system is fully operational, scientists hope to collect more in-depth evidence about the fish population in the deployment areas.

Deployment of the Trigger Cam.  AKA The Contraption.  Picture provided by NOAA.

Deployment of the Trigger Cam. AKA The Contraption. Picture provided by NOAA.

School of Pacific Cod taken by Trigger Cam.  Picture provided by NOAA.

School of Pacific Cod taken by Trigger Cam. Picture provided by NOAA.

The AVO Cam is designed to attach to a survey bottom trawl net and take picture of the fish passing through, without being caught.  There are two cameras (stereo) mounted so that field of vision intersects at a specific distance.  The two cameras and the point of intersection can be used in a process similar to triangulation that allows the length of the fish swimming through to be measured. The stereo photography process is the same technology that is used in the making of 3D movies. The AVO Cam will be used in a survey that is carried out onboard chartered commercial fishing vessels (“vessels of opportunity”).

Readying the AVO camera for sea testing.

Readying the AVO camera for sea testing.

The stereo camera data is input into measuring software, which calculates  the length of the fish in cm.  Screen shot provided by NOAA.

The stereo camera data is input into measuring software, which calculates the length of the fish in cm. Screen shot provided by NOAA.

Personal Log 

I enjoy listening to the various conversations that the scientists have about what they are seeing on the sonar displays and in the pictures, how the equipment is being used, when data are inconclusive the hypothesizing about the phenomena, and the time need to complete the different science studies.  There is only so much time.  Today’s conversation revolved around the need to hide from the weather!

An area of low air pressure is forecasted to kick up a gale force storm, and the safety of the ship, crew and science team is an important consideration in our travels.  With this in mind, the Commanding Officer of the Oscar Dyson and the science team are looking for areas of safe harbor where we are sheltered from the worst of the storm and can still do science work. I wonder will we be on the lee side of an island, in a bay or fjord?  Time will tell.

Did You Know?

To date we have traveled 2670.50 nmi since leaving Dutch harbor.

Marla Crouch: Gumbi Marla and Setting Course, June 18, 2013

NOAA Teacher at Sea
Marla Crouch
Aboard NOAA Ship Oscar Dyson
June 8-26, 2013 
 

Mission: Pollock Survey
Geographical area of cruise: Gulf of Alaska
Date: June 18, 2013

Weather Data from the Bridge: as of 1900
Wind Speed 13.48 kts
Air Temperature 7.0°C
Relative Humidity 99.00%
Barometric Pressure 1,010.00.5 mb

Latitude:  54.31N   Longitude: 159.80W

Science and Technology Log

Another fashion statement – Gumbi Marla

Here I am, all zipped up in my immersion suit.

Here I am, all zipped up in my immersion suit.

I’ve donned an immersion suit, also known as a survival suit.  One of the first things I did when I came aboard was to locate this suit and my life vest, two pieces of equipment that save lives.  In the event we had to abandon ship, the survival suit would keep me both warm and afloat until rescue.  During our evacuation drill we needed to unpack and get into the suit, and be completely zipped up in 60 seconds or less.  Getting into the suit was much easier after I took my shoes off, as the soles caught on the fabric of the suit.  The suit is made of neoprene, which was invented in 1930.  SCUBA wetsuits are also made of neoprene, and even some laptop and tablet cases.

In an earlier blog I talked about the CTD being used to calibrate the sonar aboard the Oscar Dyson, but not all technologies on the Dyson are as high tech as the CTD and sonar equipment.  In fact you can build a weather station at home that is similar to some of the equipment used by the Dyson’s crew.  Below is a picture of a hygrometer.  There are actually two hygrometers aboard, one is located on each side of the bridge.  Hygrometers are used to measure relative humidity (how much moisture is in the air).   Also pictured is the wind bird which shows the direction the wind is moving.  The propeller was actually turning rapidly when the picture was taken.  The camera was able to “stop” the action.  The wind bird is mounted atop the jack staff, high above the bow.

Hygrometers are weather instruments used to measure relative humidity.

Hygrometers are weather instruments used to measure relative humidity.

Wind bird

The following link shows you how to build six instruments for monitoring the weather.

http://oceanservice.noaa.gov/education/for_fun/BuildyourownWeatherStation.pdf

If you checked out the above link, how many snow days to you think the kids in North Dakota had?

Did you check out ship tracker?  If you did, the screen shot below will look familiar.  The blue lines in the water display the Dyson’s course.  Each segment of the course is called a transect.  Transects are numbered, enabling scientists to easily reference a location.

Oscar Dyson's course as of 6 18 13

Oscar Dyson‘s course as of 6 18 13

Are you wondering why we have traveled in rectangular patterns?  The scientists establish this course for a several reasons:

  1. Transects run perpendicular to the coast line, covering a wide range of bathymetry over the shortest distance.
  2. Regularly spaced transects (as opposed to randomly spaced or scattered) are correlated with historical data, and are the best way to describe the distribution of pollock.
  3. The combination of transects collects sufficient data to allow scientists to estimate the overall size of the pollock population with a high degree of certainty.

Does anyone have an idea about the meaning of “bathymetry” and a “leg”?  No, in this case a leg is not something you stand on.  Bathymetry is the shape and depth of the ocean floor, and a bathymetry contour line on a chart connects points of equal depth (like a topographic map).  A leg, in this context, is a segment of the overall distance covered in the survey.

The information collected during this year’s survey helps determine the number of pollock that can be caught in next year’s fishing season.

Here is the ship tracker link, you can check out the Dyson’s course and other NOAA ships as well.

http://shiptracker.noaa.gov/shiptracker.html

Personal Log 

I want to revisit the sonar of Mystery Mix One.  In my last blog I talked about what was happening near the surface of the ocean.  This time I want to focus beneath the sea floor.

Graphic provided by NOAA

Graphic provided by NOAA

Look beneath the red, yellow, and green bands, depicting the sea floor, at the blue color, notice how the density of color changes over time.  The density of the color tells scientists about the composition of the sea bed.  The denser the color, the denser or harder the seafloor is likely to be; probably, the places with the dark, dense color are rocky areas, which attract the fish schools seen in the water above.

Looking at this graph reminds me of an experiment that my husband worked on, when he worked for Charles Stark Draper Labs, in Boston, MA.  He worked on a Gravity Gradiometer that was sent to the moon on Apollo 17.  The gradiometer measured the changes in gravity.  The changes in gravitational strength give scientists information about what lays beneath the moon surface, like the sonar provides information about the sea bed.  The Gravity Gradiometer was a very specialized version of equipment that is commonly used in prospecting for oil on Earth.  I am sharing this story because, in class, one of our foci is to take what we know and apply the knowledge to a new scenario.  Next question:  Where will what we know now, take us in the future?

Did You Know?

Some fish can see color.

Marla Crouch: The Mystery and Surf Your Berth, June 14, 2013

NOAA Teacher at Sea
Marla Crouch
Aboard NOAA Ship Oscar Dyson
June 8 – 26, 2013 

Mission:  Pollock Survey
Geographical area of cruise:  Gulf of Alaska
Date: June 14, 2013

Weather Data from the Bridge: as of 1900
Wind Speed 9.57 kts
Air Temperature 6.84°C
Relative Humidity 81.00%
Barometric Pressure 1,030.5 mb

Latitude:  53.52N   Longitude: 166.34W

Science and Technology Log

The sonar on the Oscar Dyson recently created the graph below.  The graph displays the sea floor, the red, yellow, and green bands toward the bottom and along the top a few meters from the surface the layer of green and red, is the mystery.

Graphic provided by NOAA

Graphic provided by NOAA

The echoes, that create the graph do not look like fish.  The scientists recognize that something is there, the questions is, what?  Further exploration is done, but nothing definitive is found. This creates a bit of a dilemma, which initiates a whole series of conversations about trouble shooting the equipment, using different data gathering techniques (something different than a trawl), and hypothesizing about what is creating the image since there are no apparent biology.  Could the image be created by something physical in the water?  Until the make-up of the image can be identified the sonar signature, is titled and recorded as Mystery Mix One.

Taina Honkalehto, one of the scientists on this cruise, tells me that they have been encountering Mystery Mix One for a number of years here, in the Gulf of Alaska, and in different parts of the ocean at different times of the year. Mystery Mixes Two and Three are floating around as well.

Investigating Mystery Mix One:  Time stamp 12 June 2013, 050952 GMT (This time stamp equates to 8:09 almost 8:10 p.m. June 11, 2013 PDT.)

The stereo camera, which I talked about in my last blog, is a new piece of equipment that scientists are using to collect data about the ocean floor and the biology of the region.  The stereo camera was launched and submerged to a depth of 50m into the middle of Mystery Mix One, and left at that depth for 30 minutes while the Oscar Dyson drifted with the mix.  When the pictures were downloaded, the only identifiable objects were copepods, big copepods. Remember “big” is a relative term, big compared to what? Copepods can be smaller than 1 mm in length.  These big copepods are probably 6 to 8 mm.

The light image in the upper left-hand corner is a copepod.  Picture provided by NOAA

The light image in the upper left-hand corner is a copepod. Picture provided by NOAA

This is a clearer picture of a copepod. This is a clearer picture of a copepod.     Picture courtesy of comenius.susqu.edu

This is a clearer picture of a copepod.
Picture courtesy of comenius.susqu.edu

The strong sonar image created by the copepods heighten the mystery; starting another round of questions and discussions by the scientists.  Why are copepods creating such a strong sonar signature?  Why are the copepods so prominent on 18 kHz? (18 kHz is a low frequency that usually captures echoes from large objects, while small things like copepods would be seen at higher frequencies, like 200 kHz.)   Could something else be in Mystery Mix One, something that was not seen by the camera?  The discussion goes on creating a working hypothesis; the signature is being created by a combination of the copepods themselves, whatever they are feeding on and gases, being produced.  Not all the scientists are in agreement.  If Mystery Mix One was to be sampled again, would you get similar results?

Pictures from the stereo camera provided one piece of possible evidence that may lead to answering the question, “What is in Mystery Mix One?”

The next day another piece of possible evidence is added.  Oscar Dyson’s sea water intake filter is cleaned and what is found?  Krill and big copepods.  Pictures are taken and the evidence is recorded in the scientists’ journal. More evidence needs to be collected, but advances are being made to identify Mystery Mix One.

Krill are in the red ringed filter.  Copepods can be seen at the bottom of the bucket.

Krill are in the red ringed filter. Copepods can be seen at the bottom of the bucket.

Personal Log 

The first few days out at sea the waters were really calm, 1 to 3 foot swells or seas, which feels like the soothing glide of a rocking chair.  Now however, weather is moving in; wind speed is up around 15kts and the swells are about 9 ft.  Friday’s forecast is for 30kt winds and 12ft. seas.  Looking at the big picture, 9 to 12 foot seas are not very big.  But, walking around the ship with seas of that height requires due diligent to safely navigate the passage ways and steep stairs.  And you definitely need to mind the doors, make sure the door is securely latched and when opening hold on tight, as you don’t want the door to get away from you. Somebody might be standing on the other side.  Another activity that can prove challenging is getting into and out of your bunk.

The berths, or rooms, aboard ship are, for the most part, designed for two people. Look at the picture of my berth.  You can see a desk, chair, dresser and two draped bunk beds.  Mine’s the top bunk.  Our room is just about even with the water line.  That is important to know, because the lower you are in the ship the less dramatic the motion.  I’ll talk about the pitch and roll of the ship in a future blog

This is my berth.

This is my berth.

Now imagine yourself lying on a teeter totter.  You are right above the fulcrum, so you are nice and level.  An unbalanced force is now affecting your teeter totter, your feet go up your head goes down and you slide a little.  Then there is a change and you head goes up your feet go down and you slide back.  This back and forth motion is continuous, and the motion presses you into the teeter totter.  I call this the sloshing phenomena, because all the while you are teeter tottering you hear the sea water rushing pass the hull.  But wait, there is more.  Your teeter totter only moves in two dimensions, but we live in three dimensions.  Keep your teeter totter going, up and down, hear the water stream by and add a sideways roll, back and forth.  Don’t fall off your teeter totter.  You are not quite ready to surf your berth yet, sometimes the up and down, and side to side movements occur so quickly that you actually loose contact with your teeter totter.  Now you’re surfing!  I have yet to find the seat belt for my bunk.

Remember I said that my berth was low in the ship, there are only a few berths on this level, and more berths are two and three floors above me. Now think about a metronome.  If you’re not sure what a metronome is think about a windshield wiper on a car.  Both the metronome and the windshield wiper make small movements at the pivot point or fulcrum; the further away from the fulcrum the greater the range of motion. Think about how the motion is magnified as you move up from the water line.  Those folks above me are really surfing.

Did You Know?

When Taina and I were talking about Mystery Mix One she said the 18 kHz frequency ensonifying the larger fish.  I think ensonify is a cool word. I wonder if Mrs. Sunmark or Mrs. Delpez (our school’s band and orchestra teachers) have used the word ensonify in their classes?  Can any of you tell me what ensonify means?

Did you know you can follow my voyage on NOAA’s ship tracker website?  Here is the link.

http://shiptracker.noaa.gov/shiptracker.html

In my next blog, I have another fashion statement – Gumbi Marla!  And maybe something about the moon and Apollo 17.


Marla Crouch: Checking Out the Fish! June 12, 2012

NOAA Teacher at Sea
Marla Crouch
Aboard NOAA Ship Oscar Dyson
June 8-26, 2013 

Mission:  Pollock Survey
Geographical area of cruise:  Gulf of Alaska
Date: June 12, 2013

Weather Data from the Bridge: as of 2300
Wind Speed 12.30 kts
Air Temperature 6.10°C
Relative Humidity 98.00%
Barometric Pressure 1,009.6mb

Latitude:  54.22N   Longitude: 164.65W

 Science and Technology Log

Here I am all decked out in my rain gear in the wet lab, ready to sort the catch of our first bottom trawl.  Quite a fashion statement, don’t you think?

Me in my slime gear.

Me in my slime gear.

Walleye Pollock (latin name Theragra chalcogramma), a fish that lives both on and above the seafloor, is the main target of the Pollock survey, but information about other sea life is also collected.  When we start sorting the catch from this bottom trawl, the primary population is Pacific Ocean Perch (POP, Sebastes alutus).  The POP is a member of the Scorpaenidae or scorpionfish family and has poisonous spines.  When handling the fish I have to be really careful of the very sharp spines to avoid injury.  Fortunately, the POP’s teeth are not as formidable as their spines, so I can grab them by the mouth to safely move them around.

After we sort the catch the total weight of each species is recorded.  We collect additional biological data on the POP, by first sorting them by “Blokes” or “Sheilas.”  I’ll let you figure out what characterizes Blokes and Sheilas.   After the sorting, each fish in the sample is laid on an electronic measuring board (mm) to determine and record the length of the fish.  In this survey the length of the fish is measured from the tip of the mouth to the center of the “v” in the tail, this is know as the fork length.

Other populations being sampled are plankton and the jellyfish that were collected in a Methot trawl.  Here Abigail McCarthy is sorting two types of zooplankton krill (also called euphausiids) and jellyfish that were collected.  Once the sorting is completed, then the quantity and weight of the krill and the jellyfish is recorded.  One of the areas Abby is investigating is if there is a correlation between the krill population and the location of baleen feeding whales.  Abby wonders how far away the whales can smell or sense dinner?  Who can tell me which species of whales are baleen feeders?

Sorting krill and jellyfish

Sorting krill and jellyfish

Another tool the scientists use to collect data is a tethered stereo camera that takes 10 pictures/second. Using the pictures I am counting and sorting fish by species.  Look at the pictures and you’ll see a Gorgonia sea fan and a basket star.  The camera has a stationary photo length, so objects closer to the camera appear bigger.  In the picture with the sea fan, you are also seeing krill.  You can use the pairs of images from the stereo cameras to measure the size of the organisms that appear in the images.

The two cylinders in the center are the cameras and the four other cylinders are strobe lights.

The two cylinders in the center are the cameras and the four other cylinders are strobe lights.

The sea fan is a member of the soft coral family.

The sea fan is a member of the soft coral family.  Krill can be seen in front of the sea fan.  Picture provided by NOAA.

The basket star is a type of sea star.  Here the basket star is open waiting for dinner to drift by.

The basket star is a type of sea star. Here the basket star is perched on top of a sea sponge open waiting for dinner to drift by.  Picture provided by NOAA

Personal Log 

When the Oscar Dyson sailed from Dutch Harbor we head west to the Islands of Four Mountains, a cluster of volcanic isles.  On one isles is Mt. Cleveland, which on May 5th was actively spewing lava.  As we pass, Mt. Cleveland is quietly shrouded in dense cloud cover.  Darn, cannot check eruption off my “Want to see” list.  I don’t think I’ll see an aurora either as the cloud cover has been thick.

This is the south side of Onalaska.  Dutch Harbor is on north side facing the Bering Sea.

This is the south side of Unalaska. Dutch Harbor is on north side facing the Bering Sea.

Science aboard the Oscar Dyson runs 24/7.  Both the Dyson’s crew and the science team work in twelve hour shifts.  For the Dyson’s crew the day is broken into two shifts, from midnight to noon and noon to midnight.  The science team shifts are from 4 a.m. (0400 hrs.) to 4 p.m. (1600 hrs.) and 1600 hrs. to 0400 hrs. I am on the 1600hrs to 0400hrs shift; morning and night run all together.  A note here, when the scientists collect data the time stamp is Greenwich Mean Time (GMT).  GMT is eight hours ahead of us here in Alaska.

Did You Know?

I’ve discovered that you can slosh in your berth.  Check out the next blog for “Surf Your Berth.”

Marla Crouch: The Adventure Is About to Begin, May 22, 2013

NOAA Teacher at Sea
Marla Crouch
Sailing Aboard NOAA Ship Oscar Dyson
June 8 — 26, 2013

Marla

Marla Crouch.

Mission: Pollock Survey Geographical area of cruise: Gulf of Alaska Date: May 21, 2013 – Upcoming cruise dates June 6 – 26, 2013 Weather Data from the Bridge: as of 0500 Wind Speed 20.97 kts Air Temperature 5.40°C Relative Humidity 91.00% Barometric Pressure 1,031.50 mb Latitude: 55.72 Longitude:-157.36 Hi, I’m Marla Crouch I live in Issaquah, WA, about 17 miles east of Seattle.  I teach Earth Sciences and I am the Robotics Club Adviser at Maywood Middle School, in the Issaquah School District. On June 6, 2013 I will head north to Alaska to begin my adventure as a NOAA Teacher At Sea.  I’ll be updating this blog about three times a week, so check back often.  Let me know if you have answers to the questions I’ve posted. Science and Technology Log While I am aboard the Oscar Dyson I will be working with the Scientist Team doing a Pollock Survey. The Alaskan Pollock or Walleye is member of the cod family and is the most valuable fish crop in the world. Products made from Pollock were valued at $1 billion in 2010.

Pollock

Pollock, Courtesy of Google Images

During the survey we will be checking population size and characteristics including age and gender. The Science team will calibrate and monitor equipment used to find the schools of pollock that swim in the mid-water depths of the ocean (330 – 985 feet). Samples of the population will be caught using cone-shaped nets.

Personal Log The last time I cruised Alaska’s water, I was on a cruise ship gliding through the Inland Passage along Alaska’s southeast shores. This time I’m headed about 900 miles west to the island of Unalaska, in the Aleutian Islands and the open waters of the Bering Sea and the Gulf of Alaska. My Teacher At Sea experience embarks from Dutch Harbor, AK. Here I will meet the NOAA ship Oscar Dyson; I’ll introduce myself to the ship’s crew and science team and settle in for the 19 day fishery cruise.

Oscar Dyson, courtesy of NOAA

Oscar Dyson, courtesy of NOAA

Have you ever wondered why ships/boats are referred to as “she?” Answer, no one knows for sure as the origins have been lost in oral history. I’ll be interested in finding out how the Oscar Dyson crew refers to her. The NOAA ship Oscar Dyson is 63.8m long, 15m wide and displaces 2479 metric tons when fully loaded. The Dyson can be at sea up to 40 days and travel 12,000 nmi before replenishing supplies. Okay, Ladies and Gentlemen, your turn to do the math. Tell me what are the dimensions of the Dyson in feet? I’ll help; here is the conversion ratio, 1m: 3.28ft. Next question: convert nautical miles to statue miles 1mi: 1.15nmi.

Drawing of NOAA Ship Oscar Dyson

Drawing of NOAA Ship Oscar Dyson

The Oscar Dyson was launched in Pascagoula, MS in October 2003 and commissioned in 2005 in Kodiak, AK. The mission of the Dyson is to protect, restore and manage the use of living marine, coastal, and ocean resources through ecosystem-based management. The ship observes weather, sea state and environmental conditions, studies and monitors fisheries, and both marine birds and mammals. Check out the video below of the launching of the Dyson.

Video courtesy of http://www.moc.noaa.gov/od/ (animation 6) In preparation for my trip I did a little research on Dutch Harbor and the island of Unalaska.  Unalaska is one of approximately 100 stratovolcanic islands spanning 1250 miles in Aleutian Islands chain. The Port of Dutch Harbor is the only deep draft, ice-fee port from Unimak Pass west to Adak and north to the headwaters of the Bering Straits. Annually, more than 1.7 billion pounds of seafood are shipped from Dutch Harbor. Island history includes settlements by the Unangan (Aleut) people roughly 9,000 years ago, architectural and cultural influences from Russia, the invasion by Japanese forces and the internment of American civilians in WWII. The WWII Aleutian Campaign is one of the deadliest battles in the Pacific theater. A note for our students studying WWII: check out the National Park Service web site for the Aleutian World War II.

Did You Know? I’ve learned a new word, Williwaw. I think I’ll add this word to our study of Catastrophic Events.   What is a Williwaw?  You tell me.  Here is a hint, if the ship encounters a Williwaw I may be searching for the Dramamine.

Allan Phipps: From Unalaska to Un-Alaska, September 21, 2012

NOAA Teacher at Sea
Allan Phipps
Aboard NOAA Ship Oscar Dyson
July 23 – August 11, 2012

The bow of NOAA Ship Oscar Dyson!

Mission: Alaskan Pollock Mid-water Acoustic Survey
Geographical Area: Bering Sea
Date: September 1, 2012
.

Location Data 
Latitude: N 26° 03.476′
Longitude: W 080° 20.920′

Weather Data from home
Wind Speed:   7.8 knots (9 mph)
Wind Direction: East
Wave Height:    2 ft
Surface Water Temperature: 28.9°C (84°F)
Air Temperature: 30°C (86 °F)
Barometric Pressure:    1016 millibars ( 1 atm)

Science and Technology Log:  

Below are the numbers that Johanna (my fellow Teacher at Sea) put together at the end of our mission.

We completed 44 hauls in our leg of the survey and caught approximately 118,474 pollock.  All of those pollock weighed a collective 24,979.92 kg (= 25 tons)!  Last year’s official total allowable catch (called a quota) for all commercial fishermen in Alaska was 1.17 million tons!

So, we only caught 25 tons/ 1,170,000 tons = 0.00002 = 0.002% of the yearly catch in our study.

The estimated population of pollock in the Bering Sea  is 10 million tons (10,000,000 T).  This means we caught only 0.00025% of the entire pollock population!

So, as you can see, in the big picture, our sampling for scientific analysis is quite TINY!

Continuing with more cool pollock data…

  • We identified 7,276 males and 7,145 females (and 2,219 were left unsexed)
  • We measured 16,640 pollock lengths on the Ichthystick!
  • Pollock lengths ranged from 9cm to 74cm
  • We measured 260 lengths of non-pollock species (mostly jellyfish, pacific herring, and pacific cod)
  • We collected 1,029 otoliths for analysis

Personal Log:

After two full days of travel including a long red-eye flight across country, I am back in Ft Lauderdale, Florida.  I had the most incredible experience as a NOAA Teacher at Sea on the Oscar Dyson!  The trip was absolutely amazing!  Here are some parting shots taken on my last day in Dutch Harbor, Alaska.

The scientists onboard the Oscar Dyson on this leg of the Alaska Walleye Pollock Acoustic Trawl Survey. From left to right we see fellow Teacher at Sea Johanna, chief scientist Taina, scientists Rick and Kresimir, myself, then scientist Darin.

The bottom-trawl net all wrapped up and ready to off-load. Note the label says “used and abused.” This is to remind workers in the net yard to check and mend the net.  It reminds me that we worked hard and worked the equipment harder.  Sign me up again for another NOAA Teacher at Sea experience!!!

In closing, I would like to thank a few people.  The NOAA Corps officers and deck crew are wonderful and do a great job running a tight ship.  I would like to thank them all for keeping me safe, warm, dry, and well fed while out at sea.  They all made me feel right at home.

The NOAA scientists Taina, Kresimir, Rick and Darin did a fabulous job patiently explaining the science occurring onboard and I appreciate them letting me become a part of the team!  I loved immersing myself back in the practice of real scientific inquiry and research!

I would like to thank the NOAA Teacher at Sea program for allowing me to take part in this incredible research experience for teachers!  Teachers and students in my district are very excited to hear about my experiences and I look forward to continuing to share with them about NOAA Teacher at Sea!  Sign me up, and I’d be happy to “set sail” with NOAA again.

Finally, I would like to thank my readers.  I truly enjoyed sharing my experiences with you and hope that, through my blog, you were able to experience a bit of the Bering Sea with me.

Allan Phipps: Looking Ahead: The Future of NOAA Fish Surveys? August 10, 2012

NOAA Teacher at Sea
Allan Phipps
Aboard NOAA Ship Oscar Dyson
July 23 – August 11, 2012

The Oscar Dyson at anchor in Captains Bay during calibration procedures.

Mission: Alaskan Pollock Mid-water Acoustic Survey
Geographical Area: Bering Sea
Date: August 10, 2012
.

Location Data
Latitude: 53°54’41″ N
Longitude: 166°30’61″ E
Ship speed:  0 knots (0 mph) In Captains Bay at Dutch Harbor during calibration.

Weather Data from the Bridge
Wind Speed:  17 knots (19.5 mph)
Wind Direction: 184°
Wave Height:   1-2 ft
Surface Water Temperature: 10.2°C (50.4°F)
Air Temperature: 12.5°C (54.5°F)
Barometric Pressure:   1005.9 millibars (0.99 atm)

Science and Technology Log:

Imagine a time when fish surveys could be done through remote sensing, thus eliminating the need to catch fish via trawling to verify fish school composition, length, weight, and age data.  During our “Leg 3” of the Alaska Pollock Acoustic Midwater Trawl Survey, we caught, sorted, sexed, and measured 25 tons of pollock!  While this amounts to only 0.002% of the entire pollock quota and 0.00025% of the pollock population, wouldn’t it be nice if we could determine the pollock population without killing as many fish?

Cam-Trawl sitting on deck after several successful trawls.

Introducing the “Cam-Trawl,” a camera-in-net technology that NOAA scientists Kresimir and Rick are developing to eventually reduce, if not eliminate, the need to collect biological specimens to verify acoustic data.  Cam-Trawl consists of a pair of calibrated cameras slightly offset so the result is a stereo-camera.

The importance of setting up a stereo-camera is so you can use the slightly different pictures taken at the same time from each camera to calculate length of the fish in the pictures.  Eventually, a computer system might use complex algorithms to count and measure length of the fish that pass by the camera.  If the kinks are worked out, the trawl net would be deployed with the codend open, allowing fish to enter the net and flow past the camera to have their picture taken before swimming out of the open end of the net.  Some trawls would still require keeping the codend closed to determine gender ratios and weights for extrapolation calculations; however, the use of Cam-Trawl would significantly reduce the amount of pollock that see the fish lab of the Oscar Dyson.  On this leg of the survey, the NOAA scientists installed the Cam-Trawl in a couple of different locations along the trawl net to determine where it might work best.

Installing Cam-Trawl into the side of the AWT trawl net so the NOAA scientists may capture image data during trawls.

Below are some photos taken by Cam-Trawl of fish inside the AWT trawl net.  Remember, there are two cameras installed as a stereo-camera that create two images that are taken at slightly different angles.  In the photos below, I only picked one of the two images to show.  In the video that follows, you can see how scientists use BOTH photos to calculate the lengths of the fish captured on camera.

Pollock (Theregra chalcogramma) as seen by Cam-Trawl.

A Sea Nettle (Chrysaora melanaster)  jellyfish at top right, Chum Salmon (Oncorhynchus keta ) at bottom right, and Pacific Herring (Clupea harengus) on the left as seen by Cam-Trawl installed in the AWT trawl net.

Another NOAA innovation using stereo cameras is called “Trigger-Cam.” Trigger-Cam is installed into a crab pot to allow it to sit on the ocean floor.  For this type of camera deployment, the NOAA scientists removed the crab pot net so they would not catch anything except pictures.

Trigger-Cam back on the deck of the Oscar Dyson after a successful test run.

The real innovation in the Trigger-Cam is the ability to only take pictures when fish are present.  Deep-water fish, in general, do not see red light.  The Trigger-Cam leverages this by using a red LED to check for the presence of fish.  If the fish come close enough, white LEDs are used as the flash to capture the image by the cameras.

Skilled Fisherman Jim lowering down the “heart” of Trigger-Cam for a trial run. On this dip, Trigger-Cam went down to 100 meters. Several of these tests were done before installing Trigger-Cam into a crab pot.

The beauty of this system is that it uses existing fishing gear that crab fishermen are familiar with, so it will be easily deployable.  Another stroke of brilliance is that the entire device will cost less than $3,000.   This includes the two cameras, lights, onboard computer, nickel-metal hydride batteries, and a pressure housing capable of withstanding pressures of up to 50 atmospheres (500 meters) as tested on the Oscar Dyson!  Here is a short animated PowerPoint that explains how Trigger-Cam works.  Enjoy!

Here are a couple of picture captured by the Trigger-Cam during trials!

Two pictures taken from Trigger-Cam during testing.

While these pictures were captured during tests in Dutch Harbor, they do provide proof-of-concept in this design.  With a cheap, easily deployable and retrievable stereo-camera system that utilized fishing gear familiar to most deck hands, Trigger-Cams might contribute to NOAA’s future technology to passively survey fish populations.

NOAA scientists Kresimir Williams (in center), Rick Towler (on right), and me, after assembling and testing another stereo-camera system for a NOAA scientist working on the next cruise. Kresimir and Rick designed and built Trigger-Cam!

Personal Log:

A little fun at sea!  We needed to do one last CTD (Conductivity, Temperature, Depth), and decided to lower the CTD over deep water down to 500 meters (1,640.42 ft)!  Pressures increases 1 atmosphere for every 10 meters in depth. At 500 meters, the pressure is at 50 atmospheres!!!  We wondered what would happen if… we took styrofoam cups down to that depth.  We all decorated our cups and put them in a net mesh bag before they took the plunge.  Here is a picture showing what 50 atmospheres of pressure will do to a styrofoam cup!

Three styrofoam cups that went 500 meters deep in the Bering Sea! These cups were originally the size of the undecorated white styrofoam cup in the background.

We missed the Summer Olympics while out on the Bering Sea.  T-T  We did get in the Olympic spirit and had a race or two.  Here is a little video in the spirit of the Olympics…

All for now… We are back in Captains Bay, Dutch Harbor, but are calibrating the hydroacoustic equipment at anchor.  Calibration involves suspending a solid copper sphere below the ship while the NOAA scientists check and fine-tune the different transducers.  This process will take about 7 hours!  We have been out at sea for 3 weeks, are currently surrounded by land, but must wait patiently to finish this last and very important scientific task.  If the calibration is off, it could skew the data and result in an inaccurate population estimation and quotas that may not be sustainable!  This Landlubber can’t wait to have his feet back on terra firma.  The thought of swimming crossed my mind, but I think I’ll wait.  Then we will see if I get Land Sickness from being out at sea for so long…

Johanna Mendillo: Time to Bid Alaska, the Bering Sea, and the Oscar Dyson Adieu… August 9, 2012

NOAA Teacher at Sea
Johanna Mendillo
Aboard NOAA Ship Oscar Dyson
July 23 – August 10

Mission: Pollock research cruise
Geographical area of the cruise: Bering Sea
Date: Thursday, August 9, 2012

Location Data from the Bridge:

Latitude: 57 28 ’ N
Longitude: 173 54’W
Ship speed: 11.2 knots ( 12.9 mph)

Weather Data from the Bridge:

Air temperature: 8.0 C (46.4 ºF)
Surface water temperature: 8.3 C (46.9ºF)
Wind speed: 7.4 knots ( 8.5 mph)
Wind direction: 130T
Barometric pressure: 1015  millibar (1 atm)

Science and Technology Log:

We have now completed 44 hauls in our survey and are on our way back to Dutch Harbor!  You can see a great map of our sampling area in the Bering Sea– click below.

Map showing sampling transects for Leg 3 of Summer 2012 NOAA Pollock Cruise

From those hauls, let me fill you in on some of the cool statistics:

  • We caught approximately 118,474 pollock and they weighed 24,979.92 kg (= 25 tons)!

COMPARE THAT TO:

  • Last year’s official total allowable catch (called a quota) for all commercial fishermen in Alaska was 1.17 million tons!

So, we only caught 25 tons/ 1,170,000 tons = 0.00002 = 0.002% of the yearly catch in our study.

COMPARE THAT to:

  • The estimated population of pollock in the Bering Sea  is 10 million tons (10,000,000 T)!
  • This means we caught only 0.00025% of the entire pollock population!

So, as you can see, students, in the big picture, our sampling for scientific analysis is quite TINY!

Continuing with more cool pollock data…

  • We identified 7,276 males and 7,145 females (and 2,219 were left unsexed)
  • We measured 16,640 pollock lengths on the Ichthystick!
  • Pollock lengths ranged from 9cm to 74cm
  • We measured 260 lengths of non-pollock species (mostly jellyfish, pacific herring, and pacific cod)
  • We collected 1,029 otoliths for analysis

You will hear more about our results this fall— as well as the management decisions that will be made with this valuable data…

We have also had some exciting specimens on our bottom trawls.  Remember, students, this simply means we drag the 83-112 net along the ocean floor.  By sampling the bottom, we collect many non-pollock species that we would never see in the mid-water column.

Preparing what looks to be a LARGE catch from the bottom trawl...

Preparing to open what looks to be a LARGE catch from the bottom trawl…

Here are some of my favorites:

This was a large Pacific Cod...

This was a large Pacific Cod…

Our close-up!

Our close-up!

Next up, a very different sort: the Opilio Tanner Crab and the Bairdi Tanner Crab- both are known in the market as Snow Crabs!

Snow crabs, big and small

Snow crabs, big and small

Perhaps my favorite…

The one and only... spiny lumpsucker!

The one and only… Siberian lumpsucker!  Yes, this specimen is full grown and no, we did not eat her, don’t worry!

Followed by a slightly different type of lumpsucker!

Contrast that with the regular lumpsucker!

Contrast that with a full grown adult smooth lumpsucker!  So ugly it is cute…

These types of nets require a lot of hands to help sort the species as they come down the conveyor belt!

Hurry up and sort!

Hurry up and sort!

Oh yes, there is MORE sorting to be done!

Oh yes, there is MORE sorting to be done!

Onto… sea urchins!

Sea Urchins!

Beautiful sea urchins!

Here is fellow TAS (Teacher at Sea) Allan removing a grouper...

Here is fellow TAS (Teacher at Sea) Allan removing a … sculpin!

And lastly, to those specimens you may have been waiting for if you are a fan of the “Deadliest Catch” TV show…

It wouldn't be a proper trip to the Bering Sea without Alaskan king crabs, right?

It wouldn’t be a proper trip to the Bering Sea without Alaskan king crabs, right?

Interested in playing some online games from NOAA, students?  Then visit the AFSC Activities Page here— I recommend “Age a Fish” and “Fish IQ Quiz” to get your started!

Lastly, students, as one final challenge, I would like you to take a look at the picture below and write back to me telling me a) what instrument/tool he is using and b) what it is used for:

Here is Rick... hard at work!

Here is Rick… hard at work!

Personal Log:

Well, my time at sea has just about come to an end.  This has been a wonderful experience, and I am very grateful to the NOAA science team (Taina, Darin, Kresimir, Rick, Anatoli, Kathy, and Dennis) for teaching me so much over these last three weeks.  They have wonderful enthusiasm for their work and great dedication to doing great science!  Not only do they work oh-so-very-hard, they are a really fun and personable group to be around!  Many, many thanks to you all.

Thanks also go to my Teacher at Sea partner, Allan Phipps, for taking photos of me, brainstorming blog topics, helping out processing pollock during my shift, and other general good times.  It was great to have another teacher on board to bounce ideas off of, and I learned a great deal about teaching in Southern Florida when we discussed our respective districts and schools.

I would also like to thank the NOAA officers and crew aboard the Oscar Dyson.  I have really enjoyed learning about your roles on the ship over meals and snacks, as well as many chats on the bridge, deck, fish lab, lounge, and more.  You are a very impressive and efficient group, with many fascinating stories to tell!  I will look forward to monitoring the Dyson’s travels from Boston online, along with my students.

Goodbye Oscar Dyson!

Goodbye Oscar Dyson! (Photo Credit: NOAA)

In the upcoming school year, students, you will learn how you can have a career working for NOAA,  but you can start by reading about it here:

  • NOAA (the National Oceanic and Atmospheric Administration)
  • NOAA Corps (the NOAA Commissioned Officer Corps)
  • Alaskan Fisheries Science Center (the research branch of NOAA’s National Marine Fisheries Service dedicated to studying the North Pacific Ocean and East Bering Sea)
  • MACE (the Midwater Assessment and Conservation Engineering program- the NOAA group of scientists I worked with- based in Seattle)

Special thanks to our Commanding Officer (CO) Mark Boland and Chief Scientist Taina Honkalehto for supporting the Teacher at Sea program.  I know I speak on behalf of many teachers when I say there are many, many ways I will be bringing your work into the classroom, and I hope, helping recruit some of the next generation of NOAA officers and scientists!

There are many pictures I could leave you with, but I decided to only choose two- one of a lovely afternoon on deck in the Bering Sea, and the other, of course, one more of me with a pollock head!

A lovely afternoon on the Bering Sea...

A lovely afternoon on the Bering Sea…

Last, but not least….

Thank you very much NOAA and the Teacher at Sea program!

Thank you very much NOAA and the Teacher at Sea program!

Allan Phipps: Shhh! Be very, very quiet! We’re hunting pollock! August 7, 2012

NOAA Teacher at Sea
Allan Phipps
Aboard NOAA Ship Oscar Dyson
July 23 – August 11, 2012

Fun with Blue King Crab (Paralithodes platypus)!

Mission: Alaskan Pollock Midwater Acoustic Trawl Survey
Geographical Area: Bering Sea
Date: August 7, 2012

Location Data
Latitude: 60°25’90″ N
Longitude: 177°28’76″ W
Ship speed:  3 knots (3.45 mph)

Weather Data from the Bridge
Wind Speed:  5 knots (5.75 mph)
Wind Direction: 45°
Wave Height:   2-4 ft with a  2 ft swell
Surface Water Temperature: 8.6°C (47.5 °F)
Air Temperature: 8°C (46.4 °F)
Barometric Pressure: 1019 millibars (1 atm)

Science and Technology  Log:

In my last blog, we learned about how the scientists onboard the Oscar Dyson use some very sophisticated echo-location SONAR equipment to survey the Walleye pollock population.

Can the Walleye pollock hear the “pings” from the SONAR?

No.  Unlike in the movies like “The Hunt for Red October” where submarines are using sound within the human audible range to “ping” their targets, the SONAR onboard the Oscar Dyson operates at frequencies higher than both the human and fish range of hearing.  The frequency used for most data collection is 38 kHz.  Human hearing ranges from 20 Hz to 20 kHz.  Walleye pollock can hear up to 900 Hz.  So, the pollock cannot hear the SONAR used to locate them…

Can the Walleye pollock hear the ship coming?

Normally, YES!  Fish easily hear the low frequency noises emitted from ships.

A comparison of hearing ranges for various organisms showing the anthropogenic source noise overlap (courtesy of oceannavigator.com).

If you are operating a research vessel trying to get an accurate estimate on how many fish are in a population, and those fish are avoiding you because they hear you coming, you will end up with artificially low populations estimates!  The International Council for the Exploration of the Seas (ICES) established noise limits for research vessels that must be met in order to monitor fish populations without affecting their behavior.  Fish normally react to a threat by diving, and that reduces their reflectivity or target strength, which reduces the total amount of backscatter and results in lower population estimates (see my last blog).

A comparison of two ships and fish reaction to the noise produced by each.  The Oscar Dyson has a diesel electric propulsion system as one of its noise reduction strategies.  Notice the smaller noise signature (in blue) and fewer fish avoiding (diving) when the ship approaches (www.uib.no).

That is why NOAA has invested in noise-reducing technology for their fish survey fleet.  The Oscar Dyson was the first of five ships build with noise-reducing technology.  These high-tech ships have numerous strategies for reducing noise in the range that fish might hear.

There are two main sources of engine noise onboard a ship:  machinery noise and propeller noise.

The two main sources of ship noise. (www.nmfs.noaa.gov/pr/pdfs/acoustics/session2_fischer.pdf)

The best acoustic ship designs are going to address the following:

1)   Address hydrodynamics with unique hull and propeller design.

2)   Use inherently quiet equipment and choose rotating rather than reciprocating equipment.

3)   Use dynamically stiff foundations for all equipment (vibration isolation).

4)   Place noisier equipment toward the centerline of the ship.

5)   Use double-hulls or place tanks (ballast and fuel tanks) outboard of the engine room to help isolate engine noise.

6)   Use diesel electric motors (diesel motors operate as generators while electric motors run the driveshaft.

Propeller Design:

The U.S. Navy designed the Oscar Dyson’s hull and propeller for noise quieting.  This propeller is designed to eliminate cavitation at or above the 11 knot survey speed.  Not only does cavitation create noise, it can damage the propeller blades.

Photo of cavitation caused by a propeller. These air bubbles that form along the edge of the blades can cause damage to the propeller and cause excess noise. (www.thehulltruth.com/boating-forum/173520-prop-cavitation-burn-marks.html)

Hull Design:

The Oscar Dyson’s hull has three distinguishing characteristics which increase its hydrodynamics and reduce noise by eliminating bubble sweep-down along the hull.  The Oscar Dyson has no bulbous bow, has a raked keel line that descends bow to stern, and has streamlined hydrodynamic flow to the propeller.

An artist rendition of the NOAA FRV-40 Class ships. Notice the unique hull design. (http://www.noaanews.noaa.gov/stories2004/images/bigelow2.jpg)

Vibration Isolation:

To reduce a ship’s noise in the water, it is absolutely crucial to control vibration.  The Oscar Dyson has four Caterpillar diesel gensets installed on double-stage vibration isolation systems.  In fact, any reciprocating equipment onboard the Oscar Dyson is installed on a double-stage vibration isolation system using elastomeric marine-grade mounts.

A picture of one of the Caterpillar diesel generators before installation in the Oscar Dyson. Notice the double vibration isolation sleds to reduce noise (www.nmfs.noaa.gov/pr/pdfs/acoustics/session2_fischer.pdf).

Since the diesel engines are mounted on vibration isolation stages, it is necessary to also incorporate flexible couplings for all pipes and hoses connecting to these engines.

A look at one of the four diesel generators onboard the Oscar Dyson. Notice the black flexible hose couplings in place to allow vibration isolation in the white pipes.

Any equipment with rotating parts is isolated with a single-stage vibration system.  This includes equipment like the HVAC, the electric generators for the hydraulic pumps, and the fuel centrifuges that remove any water and/or particles from the fuel before the fuel is pumped to the diesel generators.

A close-up of the single sled vibration isolation system supporting the hydraulic pumps that run the deck winches.

 

Low Noise Equipment:

The only equipment that does not use vibration isolation stages are the two Italian-made ASIRobicon electric motors that are mounted in line with the prop shaft.  Both are hard-mounted directly to the ship because they are inherently low-noise motors.  This is one of the benefits of using a diesel-electric hybrid system.  The diesel motors can be isolated in the center of the ship, near the centerline and away from the stern.  The electric motors can be located wherever they are needed since they are low noise.

Even the propeller shaft bearings are special water-lubricated bearings chosen because they have a low coefficient of friction and superior hydrodynamic performance at lower shaft speeds resulting in very quiet operation.  They use water as a lubricant instead of oil so there is a zero risk of any oil pollution from the stern tube.

Acoustic Insulation and Damping Tiles:

The Oscar Dyson uses an acoustic insulation on the perimeter of the engine room and other noisy spaces.  This insulation has a base material of either fiberglass or mineral wool.  The middle layer is made of a high transmission loss material of limp mass such as leaded vinyl.

The Oscar Dyson also has 16 tons of damping tiles applied to the hull and bulkheads to reduce noise.

The Results:

All of these noise-reducing efforts results in a fully ICES compliant research vessel able to survey fish and marine mammal populations with minimal disturbance.  This will help set new baselines for population estimates nationally and internationally.

A comparison of the Oscar Dyson and the Miller Freeman. Notice that the Oscar Dyson is at or below the standards set by ICES (http://icesjms.oxfordjournals.org/content/65/4/623.full).

As you can see from the graph above, The Oscar Dyson is much quieter than the Miller Freeman, the ship that it is replacing.  You can see the differences in the hull design from the picture below.

The quieter Oscar Dyson (on right) replaced the noisy Miller Freeman (on left) http://www.afsc.noaa.gov.

Next blog, I will write about new, cutting edge technology that might reduce the need for biological trawling to verify species.

Sources:

Special thanks to Chief Marine Engineer Brent Jones for the tour of the engineering deck and engine room, and for the conversations explaining some of the technology that keeps the Oscar Dyson going.

http://marine.cat.com/cda/files/1056683/7/VRS_Commercial+Vessel+3512B%26+Commercial+Vessel+3508B+Workboat+(6-2005).pdf

www.maritimejournal.com/features101/power-and-propulsion/no_noise_for_noaa

www.publicaffairs.noaa.gov/nr/pdf/aug2002.pdf

www.nmfs.noaa.gov/pr/pdfs/acoustics/session2_fischer.pdf

http://icesjms.oxfordjournals.org/content/65/4/623.full

Personal Log:

I found out drills aboard ships are serious business!  Unlike a fire drill at school where students meander across the street and wait for an “all clear” bell to send them meandering back to class, fire drills on a ship are carefully executed scenarios where all crew members perform very specific tasks.  When out at sea, you cannot call the fire department to rescue you and put out a fire.  The crew must be self-reliant and trained to address any emergency that arises.  When we had a fire drill, I received permission from Commanding Officer Boland to leave my post (after I checked in) and watch as the crew moved through the ship to locate and isolate the fire.  They even used a canister of simulated smoke to reduce visibility in the halls similar to what would be experienced in a real fire!

Robert and Libby suit up during a fire drill!

Late last night, we finished running our transects!  Our last trawl on transect was a bottom trawl which brought up some crazy creatures!  Here are a couple of photos of some of the critters we found.

From left to right, Blue King Crab (Paralithodes platypus), Alaska Plaice (Pleuronectes quadrituberculatus), Red Irish Lord eating herring on the sorting table (Hemilepidotus hemilepidotus), and Skate (unidentified).

Next blog will probably be my last from Alaska.  T-T

Johanna Mendillo: Hello pollock…. can you hear me now? August 7, 2012

NOAA Teacher at Sea
Johanna Mendillo
Aboard NOAA ship Oscar Dyson
 July 23 – August 10

Mission: Pollock research cruise
Geographical area of the cruise: Bering Sea
Date: Tuesday, August 7, 2012

Location Data from the Bridge:
Latitude: 59 52 ’ N
Longitude: 177 17’ W
Ship speed:   8.0 knots ( 9.2 mph)

Weather Data from the Bridge:
Air temperature: 7.3C (45.1ºF)
Surface water temperature: 8.4C (47.1ºF)
Wind speed:  4 knots ( 4.6 mph)
Wind direction: 75T
Barometric pressure:  1018 millibar (1 atm)

Science and Technology Log:

We are wrapping up our final few sampling transects.  Now that you are practically fisheries biologists yourselves from reading this blog, students, we must return to the fundamental question— how do we FIND the pollock out here in the vast Bering Sea?  The answer, in one word, is through ACOUSTICS!

Look at all of these birds off the stern!  Why do you think they are following us?  Are we about to haul up a catch, perhaps?

Look at all of these birds off the stern! Why do you think they are following us? Are we about to haul up a catch, perhaps?

Hydroacoustics is the study of and application of sound in water.  Scientists on the Oscar Dyson use hydroacoustics to detect, assess, and monitor pollock populations in the Bering Sea.

Now, you may have heard of SONAR before and wonder how it connects to the field of hydroacoustics.  Well, SONAR (SOund Navigation and Ranging) is an acoustic technique in which scientists send out sound waves and measure the “echo characteristics” of targets in the water when the sound waves bounce back— in this case, the targets are, of course, the pollock!  It was originally developed in WWI to help locate enemy submarines!  It has been used for scientific research for over 60 years.

(PLEASE NOTE: The words sonar, fishfinders, and echosounders can all be used interchangeably.)

The transducer sends out a signal and waits for the return echo...

The transducer sends out a signal and waits for the return echo once it bounces off the fish’s swim bladder… (Source: http://www.dosits.org)

On the Dyson, there is, not one, but a collection of five transducers on our echosounder, and they are set at five different frequencies.  It is lowered beneath the ship’s hull on a retractable centerboard.  The transducers are the actual part of the echosounder that act like antennae, both transmitting and receiving return signals.

The transducers transmit (send out) a “pulse” down through the water, at five different speeds ranging from 18-200kHz, which equals 18,000-200,000 sound waves a second!

When the pulse strikes the swim bladders inside the pollock, it gets reflected (bounced back) to the transducer and translated into an image.

First of all, what is a swim bladder?  It is simply an organ in fish that helps them stay buoyant, and, in some cases, is important for their hearing.

Swim Bladder (Source: www.education.com)

Swim Bladder (Source: http://www.education.com)

Now, why do the pulses bounce off the swim bladders, you ask?  Well, they are filled mostly with air and thus act as a great medium for the sound waves to register and bounce back.

Think of it this way: water and air are two very different types of materials, and they have very different densities.  The speed of sound always depends on the material through which the sound waves are traveling through.  Because water and air have very different densities, there is a significant difference in the speed of sound through each material, and that difference in speed is what is easy for the sonar to pick up as a signal!

It is the same idea when sound waves are used to hit the bottom of the ocean to measure its depth- it is easy to read that signal because the change in material, from water to solid ground, produces a large change in the speed of the sound waves!

Here is a sonar system measuring the depth of the ocean...

Here is a sonar system measuring the depth of the ocean… (Source: http://www.dosits.org)

Interestingly, different types of fish have different shaped and sized swim bladders, and scientists have learned that they give off different return echos from sonar signals!  These show up as slightly different shapes on the computer screen, and are called a fish’s “echo signature”.  We know, however, that we will not encounter many fish other than pollock in this area of the Bering Sea, so we do not spend significant time studying the echo signatures on this cruise.

So, what happens when these signals return to the Dyson?  They are then processed and transmitted onto the computer screens in the hydroacoutsics lab on board.  This place is affectionately known as “the cave” because it has no windows, and it is, in fact, the place where I spend the majority of my time when I am not processing fish!  Here it is:

Here is Anatoli observing potential fish for us to go catch!

Here is Anatoli observing potential fish for us to go catch!

We spend a lot of time monitoring those computer screens, and when we see lots of “specks” on the screen, we know we have encountered large numbers of pollock!

Here we are approaching a LARGE group of pollock!

Here we are approaching a LARGE group of pollock!

When the scientists have discussed and confirmed the presence of pollock, they then call up to the Bridge and announce we are “ready to go fishing” at a certain location and a certain depth range!  Then, the scientists will head upstairs to the Bridge to work with the officers and deck crew to supervise the release, trawling, and retrieval of the net.

Now, in addition to the SONAR under the ship, there are sensors attached to the top of the net itself, transmitting back data.  All of the return echos get transmitted to different screens on the bridge, so not only can you watch the fish in the water before they are caught, you can also “see” them on a different screen when they are in the net!  As I told you in the last post, we will trawl for anywhere from 5-60 minutes, depending on how many fish are in the area!

Left: Echosounder at work/  Right: The "return signature" is visible on the computer!

Left: Echosounder at work/ Right: The “return signature” is visible on the computer!  (Source: http://www.dosits.org)

A full catch- success!  Without acoustics, it would be much harder for NOAA to monitor and study fish populations.

A full catch- success! Without acoustics, it would be much harder for NOAA to monitor and study fish populations.

Personal Log:

In these last few days, we have crossed back and forth from the Russian Exclusive Economic Zone (EEZ) and the U.S. several times.  There were some nice views of Eastern Russia before the clouds and fog rolled in!

I can see Russia from my ship!

I can see Russia from my ship! (Photo Credit: Allan Phipps)

In addition, we crossed over the International Date Line!  It turns out that everyone on board gets a special certificate called the “Domain of the Golden Dragon” to mark this event.  This is just one of a set of unofficial certificates that began with the U.S. Navy!  If you spend enough time at sea, you can amass quite a collection- there are also certificates for crossing the Equator, Antarctic Circle, Arctic Circle, transiting the Panama Canal, going around the world, and more…

I will award a prize to the first person who writes back to tell me what does it mean when one goes from a “pollywog” to a “shellback”, in Navy-speak!

Here is a picture of me with the largest pollock I have seen so far- 70cm!

If I am 5' 4", how many 70cm pollock would it take to equal my height?

If I am 5′ 4″, how many 70cm pollock would it take to equal my height?

Lastly, on to some, perhaps, cuter and more cuddly creatures than pollock- pets!  Here in the hydroacoustics lab, there is a wall dedicated to pictures of pets owned by the officers, crew, and scientists:

Those are some pretty cute pets left ashore...

Those are some pretty cute pets left ashore…

Clearly, this is a dog crowd!   I did learn, however, that our Chief Scientist, Taina, has her cat (Luna) up there!  Students, do you remember the name of my cat and, what do you think, should I leave a picture of her up here at sea?

Johanna Mendillo: Nets, Northern Sea Nettles and More…, August 5, 2012

NOAA Teacher at Sea
Johanna Mendillo
Aboard NOAA ship Oscar Dyson
July 23 – August 10

Mission: Pollock research cruise
Geographical area of the cruise: Bering Sea
Date: Sunday, August 5, 2012

Location Data
Latitude: 61º 10′ N
Longitude: 179º 28′W
Ship speed: 4.3 knots ( 4.9 mph)

Weather Data from the Bridge
Air temperature:  11.1ºC (52ºF)
Surface water temperature: 8.1ºC (46.6ºF)
Wind speed: 5.4 knots ( 6.2 mph)
Wind direction: 270ºT
Barometric pressure: 1013 millibar ( 1.0 atm)

Science and Technology Log:

So far, you have learned a lot about the pollock research we conduct on board.  You have learned:

  • How to age fish (with otoliths)
  • How to measure fish (with the Ichthystick)

and

  • How to identify fish gender (with your eyes!)

Now, we are going to backtrack a bit to the two big-picture topics that remain:

  • How do we CATCH the pollock (hint hint, that is today’s topics… NETS!)

and

  • How do we even find pollock in the Bering Sea (that is the next blog’s focus: acoustics!)

So, to begin, there are several types of nets we are carrying on board.  Remember, when a net is dragged behind a ship in the water it is called trawling, and the net can be considered a trawl.  The most-used is the Aleutian Wing Trawl, or AWT, which we use to sample the mid-water column (called a midwater trawl).  We are also using a net called the 83-112, which is designed to be dragged along the ocean floor as a bottom trawl, but we are testing it for midwater fishing instead.  In fact, sometimes during my shift we do one AWT trawl, and immediately turn around and go over the same area again with the 83-112 to see differences in the fish sizes we catch!

If the 83-112, which is a smaller net, proves to be adequate for midwater sampling, NOAA hopes it can be used off of smaller vessels for more frequent sampling, especially in the years the NOAA does not conduct the AWT (NOAA currently does AWT surveys biennially).

Now, for each type of net, there is some new vocabulary you should know:

 A typical midwater trawl

A typical midwater trawl…

The codend is the bottom of the net.  A closed codend keeps the fish inside the net and an open cod end allows them to swim through.  It may seem odd, but yes, sometimes scientists do keep the codend open on purpose!  They do this with a camera attached to the net, and they simply record the numbers of fish traveling through a certain area in a certain time period, without actually collecting them!  Here on the Dyson, the NOAA team is testing that exact type of technology with a new underwater camera called the Cam-Trawl, and you will learn about it in a later post.

The headrope is the top of the opening of the net.

The footrope is the bottom of the opening of the net.

(The 83-112 is called such because it has an 83 ft headrope and an 112 ft footrope.)

The trawl doors are in front of the headrope and help keep the net open.  Water pressure against the trawl doors pushes them apart in the water column during both setting of the net and while trawling, and this helps spread out the net so it maintains a wide mouth opening to catch fish.

There are floats on the top of the net and there can be weights on the bottom of the net to also help keep it open.

Lastly, the mesh size of the net changes: the size at the mouth of the net is 3 meters (128in.), and it decreases to 64in., 32in., 16in.., 8in., etc. until it is only ½ inch by the time you are holding the codend!

Here is a diagram to put it all together:

Courtesy of Kresimir Williams, NOAA

If you think about the opening of the net in terms of school buses, it will help!  It turns out that the AWT’s opening height, from footrope to headrope, is 25m, which is 2 school buses high!  The AWT’s opening width, is 40m across, about 3.5 school buses across!  Now, you can see why positioning and maneuvering the net takes so much care– and how we can catch a  lot of pollock!

Here is a trawl returning back to the ship's deck!

Here is a trawl returning back to the ship’s deck!

Now, when the scientists decide it is “time to go fishing” (from acoustic data, which will be the topic of the next blog) they call the officers up on the Bridge, who orient the ship into its optimal position and slow it down for the upcoming trawl.  Meanwhile, the deck crew is preparing the net.  The scientists then move from their lab up to the Bridge to join the officers– and they work together to monitor the location and size of the nearby pollock population and oversee the release and retrieval of the net.

Along the headrope, there are sensors to relay information to the Bridge, such as:

  • The depth of the net
  • The shape of the net
  • If the net is tangled or not
  • How far the net is off the bottom and
  • If fish are actually swimming into the net!

The fish and the net are tracked on this array of computer screens.  As the officers and scientists view them, adjustments to the net and its depth can be made:

The Bridge!

The Bridge!

The start of the trawl is called “EQ” – Equilibrium and the end of the trawl is called “HB” – haul back.  The net can be in the water anywhere from 5-60 minutes, depending on how many fish are in the area.

The AWT will get would up on this new reel

The AWT will get wound up on this reel

Now, sometimes an AWT catches so many fish that there are simply too many for us to measure and process in a timely fashion, so it is deemed a “splitter”!  In a splitter, there’s an extra step between hauling in the net from the ocean and emptying it to be sorted and processed.  The codend of the AWT is opened over a splitting crate, and half of the pollock go into a new net (that we will keep and sort through) and the rest of the pollock are returned to the water.

 The net is back on board!  Time to open up the codend and see what we have caught!

The net is back on board! Time to open up the codend and see what we have caught!

Personal Log:

Let’s continue our tour aboard the Oscar Dyson!  Follow me, back to the bridge, where the OOD (Officer on Duty) is at the helm.  As you already know, the first thing you notice on the bridge is the vast collection of computer screens at their disposal, ready to track information of all kinds.  You will learn more about these in an upcoming blog.

Busy at work on the bridge...

Busy at work on the Bridge…

In addition to these high-tech instruments, I was very happy to see good old-fashioned plotting on a nautical chart.  In class, students, you will have a special project where you get to track the changing position of the Oscar Dyson!

This chart is showing the northernmost point of three of our sampling transects- including the one closest to Russia!

This chart is showing the northernmost point of three of our sampling transects- including the one closest to Russia!

Here is a sample of the hour-by-hour plotting, done by divider, triangle, and pencil:

Can you spot them, hour by hour?

Can you spot them, hour by hour?

I will end here with a sea specimen VERY different from pollock, but always a fan favorite— jellyfish!  Interestingly, there are a large number of jellyfish in the Bering Sea- something I never would have assumed.  The one that we catch in almost every net is the Northern Sea Nettle (Chrysaora melanaster).  In one net, we collected 22 individuals!

When we collect non-pollock species such as these, we count, weigh, and record them in the computerized database and then release them back into the ocean.  Here they are coming down the conveyor belt after the net has been emptied:

Processing a net with many a jelly!

Processing a net with many a jelly!

The so-called bell, or the medusa, can be quite large- some are the diameter of large dinner plates (45cm)!  Their tentacles can extend to over 3m in length.  They consume mostly zooplankton, small fish (including juvenile pollock), and other jellies.  How so, exactly?  Well, when the tentacles touch prey, the nematocysts (stinging cells) paralyze it.  From there, the prey is moved to the mouth-arms and finally to the mouth, where it’s digested.

Some of the larger ones!

Some of the larger ones!

This same mechanism is used by sea nettle when it encounters danger like a large predator.  It stings the predator with its nematocysts and injects its toxins into its flesh.  In the case of smaller predators, this venom is strong enough to cause death.  In larger animals, however, it usually produces a paralyzing effect, which gives the sea nettle enough time to escape.

Now in the case of me handling them… and other humans…their sting is considered moderate to severe.  In most cases, it produces a rash, and in some cases, an allergic reaction.  However, we wear gloves on board and none of the scientists have ever had an issue holding them.  In fact, they offered to put one on my head and take a picture… but I declined!  If a few students email me, begging for such a picture, maybe I will oblige…

Johanna Mendillo: How Well Do You Know Your Pollock? August 4, 2012

NOAA Teacher at Sea
Johanna Mendillo
Aboard NOAA Ship Oscar Dyson
July 23 – August 10, 2012

Mission: Pollock Survey
Geographical area of the cruise: Bering Sea
Date: Saturday, August 4, 2012

Location Data from the Bridge:
Latitude: 62  20’ N
Longitude: 179 38’ W
Ship speed:  0.8 knots (0.9 mph)

Weather Data from the Bridge:
Air temperature: 7.1C (44.8ºF)
Surface water temperature: 8.3C (46.9ºF)
Wind speed: 22.7 knots (26.1 mph)
Wind direction: 205T
Barometric pressure:  1009 millibar (1.0 atm)

Science and Technology Log:

Out of the 30,000+ species of fish on earth, I would now like to introduce you to the fish we follow morning, noon, and night: pollock.

It is time for some fish biology 101!  The scientific name for pollock, also called walleye pollock, is Theragra chalcogramma.  This is a different species from its East Coast relative,  Atlantic Pollock.  They are in the same family as cod and haddock.

Juvenile pollock

Juvenile pollock… aren’t they cute?

AGE & SIZE:  Pollock are a fast-growing species that typically live to approximately 12yrs, but some live longer.  They are torpedo shaped (long, narrow, and with a streamlined body) and have speckled coloring that help them camouflage with the seafloor to avoid predators.  They generally range from 10-60cm in size; we have been collecting pollock generally in the 20-40cm range so far on this cruise.  Here I am holding one of the larger specimens I have seen so far:

One of the larger pollock I have seen so far...

One of the larger pollock I have seen so far…41cm!

WHERE THEY LIVE:  Younger pollock live in the mid-water region of the ocean; older pollock (age 5 and up) typically dwell near the ocean floor.  In order to sample both of these groups, we conduct trawls throughout the water column so we can get representative biological information from all habitats.

Here I am weighing pollock...

Here I am weighing pollock…

PREDATORS & PREY: 

Juvenile pollock eat a type of zooplankton called euphausids, otherwise known as krill, copepods, and small fish.  Older pollock feed on other fish…. including juvenile pollock, making them a cannibalistic species!  Pollock play an integral role in the Bering Sea food web and you will help construct that web back at school!

REPRODUCTION:  Pollock are able to reproduce by the age of 3 or 4.  In our work, we have to determine the sex of each fish by slicing it open because no reproductive organs are visible on the outside!  So, in addition to seeing the insides of many, many fish heads, I have now seen many, many fish gonads.  Here is a poster we use in the lab to learn how to identify the ovaries and testes at five different developmental stages (immature, developing, pre-spawning, spawning, and spent).

Poster showing male and female reproductive organs for ages 1-5

Poster showing ovary and testes stages 1-5!

And... it is a female!

And… it is a female!

So, how do you tell, exactly?  On the females, we go by the following guidelines:

Immature female pollock contain small ovaries tucked inside the body cavity, the ovary looks transparent, and there are no eggs visible.

Developing females have more visible and pink-ish ovaries, generally transparent to opaque.

Pre-spawning females contain large bright orange ovaries and eggs are easily discernible inside them

Spawning females have large ovaries bursting with hydrated eggs  (the fish has absorbed large amounts of water at this point), so the eggs look translucent or even transparent!

Spent females have empty flaccid ovaries.

It can sometimes be difficult to identify a female maturity stage by this simple visual scale (this is called macroscopic inspection), due to subjective interpretations of color, ovary size, and visibility of eggs, so fisheries biologists can also collect cell samples to look at gamete stages under the microscope (this is called histological analysis).  For example, a female’s ovaries can be slightly different colors based on her diet.  We are not collecting those types of samples on this cruise, however, but those are often collected during wintertime pollock cruises in the Gulf of Alaska.

These are ovaries in the pre-spawning stage

These are ovaries in the pre-spawning stage     (Photo Credit: Story Miller, TAS 2010)

Regardless of the method used, determining the ratio of different maturity stages in the female pollock population has very important implications for how scientists  calculate spawning biomass estimates, which in turn, are entered into statistical models to determine age class structures, overall population sizes, and, finally, catch quotas for the fishing industry.

On the males, we go by the following guidelines:

Immature male pollock have threadlike testes with a transparent membrane (that can be very hard to see).

Developing males have testes which look like smooth, uniformly textured ribbons.

Pre-spawning male testes appear as larger thicker ribbons.

Spawning males exhibit large testes that extrude sperm when pressed.

Spent males have large, flaccid, bloodshot, and watery testes.

These are the testes of a pre-spawning male

These are testes in the developing stage (Photo Credit: Story Miller, TAS 2010)

As for how they reproduce, pollock, like most fish, do external fertilization, which means they release eggs and sperm into the water, where they come together and fertilize.  For pollock in the northern Bering Sea, this tends to happen in the winter, from January-early April.  It appears that sub-populations in other areas of the Bering Sea and the Gulf of Alaska spawn during shorter time windows throughout the late winter and early spring.

Fish gather in large groups to spawn, and an individual female pollock can release anywhere from 10,000s – 100,000s of eggs in a single season!  They could also be released at one time or in several batches, called batch spawning.  Interestingly, if conditions are not optimal, such as low water temperatures or  poor nutrition, females can reabsorb eggs, in a process called atresia.

Here are several hundred pollock we have to sort from a typical catch!  We toss the  females in the"Sheilas" side and the males in the "Blokes" side!

Here are several hundred pollock we have to sort from a typical catch! We toss the females in the”Sheilas” side and the males in the “Blokes” side!

After spawning and fertilization, the resulting larvae grow into juveniles, the juveniles grow into adults, and the process starts anew!  Overall, scientists still have much to learn about the timing and mechanisms behind the pollock reproductive process— and I have enjoyed learning about it from the NOAA team!

Personal Log:

First, the answer was… 75 dozen eggs!  Those were some pretty close guesses, good job!

Let’s continue our tour aboard the Oscar Dyson!  Now, as you can imagine, safety and training are very important parts of life at sea.  I feel very confident in the crew and officers’ careful preparedness.  Each week, we conduct safety drills.  There are three types: man overboard, fire, and abandon ship.  For each drill, each member of the ship has to report to a certain station to check in.  In addition, you may be assigned to bring something, such as a radio, first aid kit, etc.

One of our many life rings

One of our many life rings

The drill I was most interested in was abandon ship, because not only do you carry your emergency survival (also known as an immersion) suit with you, but sometimes you practice putting it on!  I had seen many pictures of other Teachers at Sea wearing them and wanted the chance to try it on myself!

So, without further ado, here are Allan and I in our suits:

Survival Suit Stylin'

Survival Suit Stylin’

What do you think, do we look like Gumby???

So, how exactly does it work?  Well, it is a special type of waterproof dry suit that protects the wearer from hypothermia in cold water after abandoning a sinking or capsized vessel. It is made of stretchable flame retardant neoprene, and contains insulated gloves, reflective tape, whistle, and a face shield for spray protection.  The neoprene material is a synthetic rubber with closed-cell foam, which contains many tiny air bubbles, making the suit sufficiently buoyant to also be a personal flotation device.

There are various types of immersion suits.  Some contain:

  • An emergency strobe light beacon with a water-activated battery
  • An inflatable air bladder to lift the wearer’s head up out of the water
  • An emergency radio beacon locator
  • A “buddy line” to attach to others’ suits to keep a group together
  • Sea dye markers to increase visibility in water

We keep them in our rooms and there are many others placed throughout the ship in case we are not able to return to our rooms in a real emergency.

I hope that gives you a good feel for life onboard here in week two.  Please post a comment below, students, with any questions at all.

A nice sunny day in the Bering Sea!

A nice sunny day in the Bering Sea!

Allan Phipps: Show Me the Data! August 2, 2012

NOAA Teacher at Sea
Allan Phipps
Aboard NOAA Ship Oscar Dyson
July 23 – August 11, 2012

Safety first!

Mission: Alaskan Pollock Mid-water Acoustic Survey
Geographical Area: Bering Sea
Date: August 2, 2012

Location Data
Latitude: 61°12’61″ N
Longitude: 178°27’175″ W
Ship speed: 11.6 knots (13.3 mph)

Weather Data from the Bridge
Wind Speed: 11 knots (12.7 mph)
Wind Direction: 193°
Wave Height: 2-4 ft (0.6 – 1.2 m)
Surface Water Temperature: 8.3°C ( 47°F)
Air Temperature: 8.5°C (47.3°F)
Barometric Pressure: 999.98 millibars (0.99 atm)

Science and Technology Log

At the end of last blog, I asked the question, “What do you do with all these fish data?”

The easy answer is… try and determine how many fish are in the sea.  That way, you can establish sustainable fishing limits.  But there is a little more to the story…

Historically, all fisheries data were based on length.  It is a lot easier to measure the length of a fish than to accurately determine its weight on a ship at sea.  To accurately measure weight on a ship, you have to have special scales that account for the changes in weight due to the up and down motion of the ship.  Similar to riding a roller coaster, at the crest of a wave (or top of a hill on a roller coaster), the fish would appear to weigh less as it experiences less gravitational force.  At the trough of a wave (or bottom of a hill on a roller coaster), the fish would experience more gravitational force and appear to weigh more.  Motion compensating scales are a more recent invention, so, historically, it was easier to just measure lengths.

One of the motion-compensating scales onboard the             Oscar Dyson.

For fisheries management purposes, however, you want to be able to determine the mass of each fish in your sample and inevitably the biomass of the entire fishery in order to decide on quotas to determine a sustainable fishing rate.  So, you need to be able to use length data to estimate mass. Here is where science and math come to the rescue!  By taking a random sample that is large enough to be statistically significant, and by using the actual length and weight data from that sample, you can create a model to represent the entire population.  In doing so, you can use the model for estimating weights even if all you know is the lengths of the fish that you sample.  Then you can extrapolate that data (using the analysis of your acoustic data – more on this later) to determine the entire size of the pollock biomass in the Bering Sea.

How do they do that?  First, you analyze and plot the actual lengths vs. weights of your random sample and your result is a scatter-plot diagram that appears to be an exponential curve.

Scatterplot showing observed Walleye pollock weights and lengths for a sample of the population.

Then you create a linear model by log-transforming the data.  This gives you a straight line.

Linear regression of the Walleye pollock length and weight data.

Next, you back-transform the data into linear space (instead of log space) and you will have created a model for estimating weight of pollock if all you know are the lengths of the fish.  This is close to a cubic expansion which makes sense because you are going from a one-dimensional measurement (length) to a 3-dimensional measurement (volume).

Observed weight and length data showing the model for predicting weight if all you know are lengths.

Scientists can now use this line to predict weights from all of their fish samples and then extrapolate to determine the entire biomass of Walleye pollock population in the Bering Sea (when combined with acoustic data… coming up in the next blog!) when the majority of the data collected is only fish lengths.

Another interesting question… How does length change with age?  Fish get bigger as they get older, all the way until they die, which is different from mammals and birds. However, some individual fish grow faster than others, so the relationship between age and length gets a little complicated.  How do you determine the age distribution of an entire population when all you are collecting are lengths?

Several age classes of Alaskan pollock (Theragra chalcogramma).  Can you tell which one is youngest?                Are you sure???

Just like weight, you can determine the age from a subset of fish and apply your results to the rest. This works great with young fish that are one year old.  The problem is… once you get beyond a one-year-old fish, using lengths alone to determine age becomes a little sketchy.  Different fish may have had a better life than others (environmental/ecological effects) and had plenty to eat, great growing conditions, etc and be big for their age relative to the rest of the population.  Some may have had less to eat and/or unfavorable conditions such as high parasite loads leading them to be smaller…   There are also other things to consider such as genetics that affect length and growth rate of individuals.  Here is where the collection of otoliths becomes important.  By collecting the otoliths with the lengths, weights, and gender data, the scientists can look at the age distributions within the population.  The graph below shows that if a pollock is 15 cm long, it is clearly a 1 year old fish.  If a pollock is 30 cm long, it might be a 2 year old, a 3 year old, or a 4 year old fish, but about 90% of fish at this length will be 3 years old.  If a fish is 55 cm long, it could be anywhere from 6 to 10+ years old!

Graph showing age proportions of the Walleye pollock population when compared to length data.

Collection of otoliths is the only way to accurately determine the age of the fish in the random sample and be able to extrapolate that data to determine the estimated age of all the pollock in the fishery.  Here is a photo comparing otolith size of Walleye pollock with their lengths.

    A comparison of otolith sizes. These otoliths were taken from fish that were 12.5cm, 24.5cm, 30.5cm, 39.0cm, 55.5cm, and 70.0cm counter clockwise from top, respectively.

A comparison of otolith sizes. These otoliths were taken from fish that were 12.5cm, 24.5cm, 30.5cm, 39.0cm, 55.5cm, and 70.0cm counter clockwise from top, respectively.

If we wanted to find out exactly how old each of these fish were, we would need to break the otoliths in half to look at a cross section.  Below is what a prepared otolith looks like (courtesy of Alaska Fisheries Science Center).  You can try counting rings yourself at their interactive otolith activity found here.

Cross section of Walleye pollock otolith after being prepared (courtesy of the Alaska Fisheries Science Center).

All of these data go into a much more complicated model (including the acoustic-trawl survey walleye pollock population estimates) to accurately estimate the total size of the fishery and set the quotas for the pollock fishing industry so that the fishery is maintained in a sustainable manner.

Next blog, we will learn about how the various ways acoustic data fit into this equation to create the pollock fishery model!

Personal Blog

Ok, so here is a long overdue look at the NOAA Ship Oscar Dyson that I am calling home for three weeks.  I was pleasantly surprised when I saw my state room.  It is bigger than I thought it would be and came with its own bathroom.  I was also pleasantly surprised to learn I would be sharing my state room with Kresimir Williams, one of the NOAA scientists and an old college friend of mine!  Here is a picture of our room.

My state room on the Oscar Dyson. The curtains around each bunk help block out light.

The room has a set of bunk beds.  Thankfully, my bed is on the bottom.  I do not know how I would have gotten in and out of bed in the rough seas we had over the last couple of days.  If I do fall out of bed, at least I will not have far to fall.  Last year, the ship rocked so hard in rough seas that one of the scientists fell head first out of the top bunk!  The room also had two lockers that serve as closets, a desk and chair, and our immersion suits (the red gumby suits).  The bathroom is small and the shower is tiny!  Notice the handles on the wall.  These are really handy when trying to shower in rough seas!

The bathroom in my state room. Notice the essential handles.

Next, we have the Galley or Mess Hall.  This is where we have all of our meals prepared by Tim and Adam.  Notice that all of the chairs have tennis balls on the legs and that each chair has a bungee cord securing it to the floor!  There are also bungee cords over the plates and bowls.  Everything has to be secured for rough seas.

The Mess Hall, also known as “The Galley.”

The chairs in the galley have tennis balls on their feet and have bungee cords holding them down so they will not move during high seas.

The coffee bar and snack bar in the galley.

The Mess Hall also has a salad bar, cereal bar, sandwich fixings, soup, snacks like cookies, and ice cream available 24 hours a day.  No one on board is going hungry.  The food has been excellent!  We have had steaks, ribs, hamburgers and fish that Tim has grilled right out on deck.  Here is a picture of my “surf and turf” with a double-baked potato.

“Surf and Turf” meal, courtesy of Stewards Tim and Adam. Yummy!

Most of my work here on board (other than processing fish) has been in the acoustics lab, also known as “The Cave” since it has no windows.  This is where the NOAA scientists are collecting acoustic data on the schools of fish and comparing the acoustic data with the biological samples we process in the fish lab.

The acoustics lab, also known as “The Cave” since it has no windows.

I also spend some time up on the Bridge.  From the Bridge, you can see 10 to 12+ nautical miles on a clear day.  This morning, we saw a couple of humpback whales blowing (surfacing to breathe) about 1/4 mile off our starboard side!  A couple of days ago (before the weather turned foul), we spotted an American trawler.

An American Trawler spotted in some foggy weather.

Today, we got close enough to see the Russian coastline!  Here is a picture of a small tanker ship with the Russian coastline in the background!

Land Ho! A small tanker off the Russian coastline.

Here are some pictures of the helm and some of the technology we have onboard to help navigate the ship.

The “helm” of the Oscar Dyson.

Radar showing numerous Russian fishing vessels near the Russia coastline.

I have also spent some time in the lounge.  This is where you can go to watch movies, play darts (yea, right!  on a ship in rough weather???), or just relax.  The couch and chairs are so very comfy!

The Lounge aboard the Oscar Dyson.

When you have 30 people on board and in close quarters, you better have a place to do laundry!  Here is a picture of our very own laundromat.

The onboard laundry facilities.

All for now.  Next time, I will share more about life at sea!

Johanna Mendillo: From Russia with Love… August 1, 2012

NOAA Teacher at Sea
Johanna Mendillo
Aboard NOAA Ship Oscar Dyson
July 23 – August 10, 2012

Mission: Pollock Survey
Geographical area of the cruise: Bering Sea
Date: Wednesday, August 1, 2012

Location Data from the Bridge:
Latitude: 62  18’ N
Longitude: 178 51’ W
Ship speed:  2.5 knots (2.9 mph)

Weather Data from the Bridge:
Air temperature: 9.5C (49.1ºF)
Surface water temperature: 8.5C (47.3ºF)
Wind speed: 9.1 knots (10.5 mph)
Wind direction: 270T
Barometric pressure:  1001 millibar (0.99 atm)

Science and Technology Log:

In the last few days, we have crossed into the Russian Exclusive Economic Zone, sampled, and are now back on the U.S. side!   Unfortunately, students, there was no way for my passport to get stamped.  There was no formal ceremony, and we will cross back and forth many times in the next two weeks as we do our science transects, collecting Pollock, but the science team took a moment to celebrate— and I snapped a quick picture of the computer screen.

Crossing into Russia!

Crossing into the Russian Exclusive Economic Zone!

I would now like to introduce you to one of the most simple and valuable tools we use on board to measure a sample of Pollock- the Ichthystick.

The one... the only... Icthystick!

The one… the only… Ichthystick!

First, some background.  Each day we “go fishing” 2-4 times with our mid-water and bottom trawls. “Trawling” simply means dragging a large net through the water to collect fish (and you will learn more about the different types of nets we use quite soon).  After the trawl, we bring the net back on board and see what we have caught!

There are many types of data we collect from each catch- first and foremost, the total weight of the catch and the numbers and masses of any species we catch in addition to pollock.  So far, we have collected salmon, herring, cod, lumpsuckers, rock sole, arrowtooth flounder, Greenland turbot, and jellyfish on my shifts!  Our focus, though, of course, is pollock.  For pollock-specific data, we keep a sub-sample of the catch, usually 300-500 fish, for further analysis, and we release the rest back into the ocean.

From this sub-sample, I help the scientists collect gender and length data.  As I mentioned in my last post, we also collect otoliths from the sub-samples so that the age structure of the population can be studied back in Seattle.  The most straightforward and obvious data, though, is simply measuring the length of the fish, which takes us back to the wonderful contraption known as the Ichthystick!

Now, scientists cannot determines the age of a pollock simply from measuring its length- there are many factors that determine how fast a fish can grow, such as access to food, space, its overall health, environmental conditions, etc.  But, by collecting length data and combining it with age data from otoliths, scientists can begin to see the length ranges at each age class and the overall “big picture” for the population emerges.

And again, once the age structure and population size of pollock in the Bering Sea are determined for a certain year, management decisions can be made, commercial fish quotas are set for the upcoming fishing season, and there will still be a suitable population of fish left in the ocean to reproduce and keep the stocks at sustainable levels for upcoming years.

The Icthystick logo... designed by scientist Kresimir himself!

The Ichthystick logo… designed by scientist Kresimir!

So, it clearly does not make much sense to measure pollock with a ruler, paper, and pencil.  To measure hundreds of fish at a time, the NOAA team has developed a simple yet ingenious measuring tool, powered by magnets, and transmitted electronically back to their computers for easy analysis- the Ichthystick!

The Ichthystick may simply look like a large ruler, but it consists of a sensor and electronic processing board mounted in a protective (& waterproof!) container.  Inside, the sensor processes, formats and transmits the measurement values of each fish to an external computer that collects and stores the data.

 

Here I am...measuring away!

Here I am…measuring away!

Interestingly, the board works with magnets and makes use of the property of magnetostriction.

With magnetostriction, magnetic materials change shape when exposed to a magnetic field.  Magnetostrictive sensors can use this property to measure distances by calculating the “time of flight” for a sonic pulse generated in a magnetic filament when a measurement magnet is placed close to the sensor.  Here, in the picture, I am placing the fish along the sensor and holding the measurement magnet in my right hand.

Do you see stylus in my right hand?

Do you see stylus (containing the magnet) in my right hand?

To determine the distance to the measurement magnet, the elapsed time between when I touch the magnet to the board to generate the ultrasonic pulse and when the pulse is detected by the sensor is recorded– and that time is converted to a distance (using the speed of sound in that material), which is equal to the fish’s length!

Now, the “measurement magnet” is referred to as the “stylus”, and it is a little white plastic piece, the size of a magic marker cap, which contains the magnet embedded into the bottom.  You simply strap the stylus onto your index finger with velcro (so that the north pole of the magnet is facing down toward the sensor) and are ready to begin measuring!  The magnet inside is a small neodymium magnet, chosen because it has a very strong magnetic field.  Each time a measurement is recorded, a chime sounds, and I know I can go on to measuring my next fish!  At this point, I have measured a few thousand fish!

Personal Log:

Let’s continue our tour aboard the Oscar Dyson!  I think it is fair to say that scientific research makes one hungry!  I have enjoyed meeting Tim and Adam, the stewards (chefs) onboard the Dyson, devouring their delicious meals, and spending time talking with the officers and crew in the galley (kitchen) and mess (dining hall).  As you can see from my picture, the first thing you notice are the tennis balls on the bottoms of the chairs!  Why do you think they are there?

Look on the floor...

Look on the floor…

As in most things related to ship design, planning for rough seas is paramount!   So, in addition to tennis balls, which stop the chairs from sliding around, there are bungee cords that attach the chairs to the floor.  The dishes are also strapped down and most items are in boxes, bins, or behind closed doors.  But do not let that fool you— there is a LOT of food in there!  I have enjoyed many a midnight snack- fruit, yogurt, ice cream bars, cereal bars, cookies, and soup to name just a few.  In addition, there is a salad bar and a selection of leftover dinner items available to reheat each night.  Since I am on the 4pm-4am shift, I have been missing breakfast, and I have been told I must have at least one hot cooked-to-order meal before I depart!

Don't be late... or you will go hungry!

Don’t be late… or you will go hungry!

The Mess Rules!

The Mess rules!

I was a little surprised to see a mini-Starbucks on board too!  It is quite a setup, complete with pictures and directions on how to make each concoction:

Which kind would you order?

Which kind would you order?

Dennis, one of the Survey Technicians who works on the overnight shift with me, promised to make me a hazelnut latte if I could correctly predict the number of  pollock in a trawl, Price-Is-Right style.  I finally won a few nights ago….

Interestingly, there are no mechanisms in place to help the stewards cook in rough seas, but Adam assured me that he has never had a dinner for thirty slide off the grill and onto the floor!  Adam has been working in the NOAA fleet for over 10 yrs., including 7 yrs on the Miller Freeman, the precursor to the Oscar Dyson.  He has been onboard the Dyson for almost a year.  Tim has just joined the Dyson on this cruise and was previously in our home state— aboard the Delaware out of Woods Hole, Massachusetts!  Before joining NOAA, he worked on several supply ships that sailed across the world.  Each has been quite friendly and helpful as I learn to navigate my way around both the ship and my new schedule.  One of our frequent conversations is menu planning and the all-important-dessert on the schedule for each night.  So far, I have enjoyed apple cobbler, pineapple upside down cake, snickers cake, carrot cake, brownie sundaes, oatmeal raisin cookies, and… Boston cream pie!

Assistant Steward Adam

Assistant Steward Adam

Chief Steward Tim

Chief Steward Tim

Tim and Adam's domain... the Galley!

Tim and Adam’s domain… the Galley!

One last Q: How many dozens of eggs do you think Tim and Adam will go through on our 19-day cruise with 30 people on board?  Write your guess in the comment section and I will announce the answer in my next post…

Allan Phipps: Fish heads, fish heads, rolly polly fish heads…. July 31, 2012

NOAA Teacher at Sea
Allan Phipps
Aboard NOAA Ship Oscar Dyson
July 23 – August 11, 2012

Mission: Alaskan Pollock Mid-water Acoustic Survey
Geographical Area: Bering Sea
Date: July 31, 2012

Location Data
Latitude: N 61°39’29″
Longitude: W 117°55’90″
Ship speed: 11.7 knots (13.5mph)

Weather Data from the Bridge
Wind Speed: 26 knots (30mph)
Wind Direction: 044°
Wave Height: 4 meters (12 ft)
Surface Water Temperature: 8.2°C ( 46.8°F)
Air Temperature: 7.4°C (45°F)
Barometric Pressure: 994 millibar (0.98 atm)

Science and Technology Log:

Last blog, we learned about the different trawl nets and how the NOAA scientists are comparing those nets while conducting the mid-water acoustic pollock survey.  We left off with the fish being released from the codend onto the lift table and entering the fish lab.  Here is where the biological data is collected.

Walleye pollock on the sorting table. Various age groups are seen here, including one that is 70cm long and may be over 12 years old! Most are 2 to 4 year olds.

The fish lab is where the catch is sorted, weighed, counted, measured, sexed, and biological samples such as the otoliths, or earbones,  are taken (more about otoliths later in this post).  First, the fish come down a conveyor belt where they are sorted by species (see video above).  Typically, the most numerous species (in our case pollock) stay on the conveyor and any other species (jellyfish and/or herring, but sometimes a salmon or two, or maybe even something unique like a lumpsucker!), are put into separate baskets to weigh and include in the inventory count.  In the commercial fishing industry, these species would be considered bycatch, but since we are doing an inventory survey, we document all species caught.  Here are some pictures of others species caught and included in the midwater survey.

This slideshow requires JavaScript.

The goal of each trawl is to randomly select a sample of 300 pollock to measure as a good representation of the population (remember your statistics!  Larger sample sizes will give you a better approximation of the real population).  If more than 300 pollock are caught, the remainder are weighed in baskets and quickly sent back to sea.  All of the catch is weighed so the scientists can use the length and gender data taken from the sample to extrapolate for the entire catch.  This data is combined with the acoustics data to estimate the size of the entire fishery (more on acoustic data in a future post). Weights are entered via touch screen into a program (Catch Logger for Acoustic Midwater Surveys – CLAMS) developed by the NOAA scientists onboard.

The CLAMS display showing that I am “today’s scientist.”

The 300 pollock are sexed to determine the male/female ratio of this randomly selected portion of the population.  Gender is determined by making an incision along the ventral side from posterior to anterior beginning near the vent.  This exposes the internal organs so that either ovaries or testes can be seen.  Sometimes determining gender is tricky since the gonads look very different as fish pass through pre-spawning, spawning, or post-spawning stages.  When we determine gender, the fish are put into two separate hoppers, the one for females is labeled “Sheilas” and the hopper for males is labeled “Blokes.”

Making incision to determine gender on pollock sample.

Hopper for female pollock ready to be measured with the Ichthystick and entered into CLAMS.

We use an Ichthystick to then measure the males and females separately to collect length data for this randomly selected sample.  Designed by NOAA Scientists Rick and Kresimir, the Ichthystick very quickly measures lengths by using a magnet placed at the fork of the fish’s tail (when measuring fork-length).  This sends a signal to the computer to record the individual fish’s length data immediately into a spreadsheet and the software creates a population length distribution histogram in real-time as you enter data.

The Ichthystick with fingertip magnet used to quickly measure and enter length data into CLAMS.

A randomly selected subset of 40 pollock get individually weighed, length measured, sexed, evaluated for gonadal maturity and have the otoliths removed.  Otoliths (oto = ear, lithos = bone) are calciferous bony structures in the fish’s inner ear.  These are used to determine age when examined via cross-section under a dissecting scope.  The number of rings corresponds to the age of the pollock, similar to rings seen in trees. The otoliths are taken by holding the fish at the operculum and making an incision across the top of the head to expose the brain and utricle of the inner ear.  The otolith is found inside the utricle.  Forceps are used to extract the otoliths, which are then washed and put in individual bar-coded vials with glycerol-thymol solution to preserve them for analysis back at the Alaska Fisheries Science Center.

Incision across the skull revealing the otoliths on either side of the brain stem.

One otolith from a Walleye pollock.

Watch this short video to see what the entire process of data collection looks like.

So… why collect all of this data?  How is this data analyzed and used?  Stay tuned to my next blog!

Personal Log:

Well, I can officially say… the honeymoon is over.  The Bering Sea had been so extremely kind to us with several days of great weather while we had a high pressure system over us.  We enjoyed spectacular sunrises and sunsets, cloudless days and calm seas.

Sunny skies and calm seas on the Oscar Dyson.

Now… we have a low pressure system on top of us.  Last night, we experienced 35 knot winds and 12 foot seas.  I have spent a lot of time in my room in the past 24  hours…  Late this morning, the sun came out and the winds calmed down, but the barometric pressure was still very low (around 990 mbars) which basically meant we were in the center of the low pressure system (similar to the eye of a hurricane, but not as strong… thank goodness!).  We had a few hours relief, but we are back to pounding through the waves as the wind picks back up.  It will be another long and sleepless night for this landlubber…

On a positive note, we did see two Laysan Albatrosses (Phoebastria immutabilis) from the Bridge as the winds began to kick up.  They seemed to really enjoy the high winds as they soared effortlessly around the ship.  The Officer on Deck (OOD) also said he saw a humpback breaching, but by the time I got up to the Bridge, it had moved on…

Next blog, I will share pictures of my room, the galley, “the cave,” the Bridge, etc.  Right now, I am just trying to hold on to my mattress and my stomach…

Allan Phipps: Let the Fishing Begin! July 28, 2012

NOAA Teacher at Sea
Allan Phipps
Aboard NOAA Ship Oscar Dyson
July 23 – August 11, 2012

Mission: Alaskan Pollock Survey
Geographical Area: Bering Sea
Date: July 28, 2012

Location Data
Latitude: 61°24’39″N
Longitude: 177°07’68″W
Ship speed: 3.8 knots (4.4 mph) currently fishing

Weather Data from the Bridge
Wind Speed: 6.9 knots (7.9 mph)
Wind Direction: 30°T
Wave Height: 2ft with 2-4ft swells
Surface Water Temperature: 8.7°C ( 47.7°F)
Air Temperature: 7.9°C ( 46.2°F)
Barometric pressure: 1005.8 millibar (0.99 atm)

The NOAA Research Vessel Oscar Dyson at port in Dutch Harbor, Alaska.

Science and Technology Log:

Since the main goal of this voyage is the acoustic-trawl survey of the mid-water portion of the Alaskan pollock population, I thought I would start by telling you how we go fishing to catch pollock!  This isn’t the type of fishing I’m used to… Alaskan pollock is a semi-demersal species, which means it inhabits from the middle of the water column (mid-water) downward to the seafloor.  This mid-water survey is typically carried out once every two years.  Another NOAA Fisheries survey, the bottom trawl survey, surveys the bottom-dwelling or demersal portion of the pollock population every year.  I will begin by describing how we are fishing for pollock on this acoustic-trawl survey.

The Oscar Dyson carries two different types of trawling nets for capturing fish as part of the mid-water survey, the AWT (Aleutian Wing Trawl which is a mid-water trawl net) and the 83-112 (a bottom-trawl net that is named for the length of its 83 foot long head rope that is at the top of the mouth of the net and the 112 foot long weighted foot rope at the bottom of the mouth of the net).  One of the research projects on board the Oscar Dyson is a feasibility study that involves a comparison of the AWT and using the 83-112 bottom-trawl net as if it were a mid-water net.  The 83-112 is much smaller than the AWT, so there is concern with the fish avoiding this net and thus causing a reduction in catch.  While the bottom trawl survey acquires good information on the bottom-dwelling pollock using the 83-112 bottom trawl, if they also used this net to sample in mid-water they could help “fill in” estimates of mid-water dwelling pollock in years when the acoustic mid-water trawl survey does not occur.

Scale model of the Aleutian Wing Trawl (AWT) net courtesy of NOAA Scientist Kresimir Williams

When the net is deployed from the ship, the first part of the net in the water is called the cod end.  This is where the caught fish end up.  The mesh size of the net gets smaller and smaller until the mesh size at the cod end is only ½ inch (The mesh size at the mouth of the net is over 3 meters!).

The AWT is also outfitted with a Cam-Trawl, which is the next major part that hits the water.  This is a pair of cameras that help scientists identify and measure the fish that are caught in the net.  Eventually, this technology might be used to allow scientists to gather data on fish biomass without having to actually collect any fish (more on this technology later).  This piece of equipment has to be “sewn” into the side of the net each time the crew is instructed to deploy the AWT.  The crew uses a special type of knot called a “zipper” knot, which allows them to untie the entire length of knots with one pull on the end much like yarn from a sweater comes unraveled.

Cam-Trawl on deck, ready to be “sewn in” to the AWT.

The Cam-Trawl is now “sewn in” to the AWT and is ready to be deployed.

 Along the head rope, there is a piece of net called the “kite” where a series of sensors are attached to help the scientists gather data about the depth of the net, the shape of the net underwater, how large the net opening is, determine if the net is tangled, how far the net is off the bottom, and see an acoustic signal if fish are actually going into the net (more on these sensors later, although the major acoustic sensor is affectionately called the “turtle”).

Close-up view of the AWT scale model to highlight the kite and the turtle that ride at the top of the net. The third wire holds the electrical wires that send data from the turtle to the bridge (courtesy of Kresimir Williams).

Once the kite is deployed, a pair of tom weights (each weighing 250 lbs), are attached to the bridal cables to help separate the head rope from the foot rope and ensure the mouth of the net will open.  Then, after a good length of cable is let out, the crew transfers the net from the net reel to the two tuna towers and attach the doors.  The doors act as hydrofoils and create drag to ensure the net mouth opens wide.  Our AWT net usually has a 25 meter opening from head rope to foot rope and a 35 meter opening from side to side.

This picture shows the A-frame with the two tuna towers on either side. The AWT is being deployed down the trawl ramp on the stern of the ship.

The scientists use acoustic data to determine at what depth they should fish, then the OOD (Officer on Deck) uses a scope table to determine how much cable to let out in order to reach our target depth.  Adjustments to the depth of the head rope can be made by adjusting speed and/or adjusting the length of cable released.

The scientists use more acoustic data sent from the “turtle” to determine when enough fish are caught to have a scientifically viable sample size, then the entire net is hauled in.  Once on board, the crew uses a crane to lift the cod end over to the lift-table.  The lift-table then dumps the catch into the fish lab where the fish get sorted on a conveyor belt.  More on acoustics and what happens in the fish lab in my next blog!

The port side crane is lifting the cod end over to the starboard side where the lift-table will receive this morning’s catch.

Personal Log:

WOW!  What an adventure!!!  So I must get you caught up on some of the happenings thus far.  After a mix-up where my reservation was cancelled on the Saturday afternoon flight from Anchorage to Dutch Harbor and the threat of being stranded in Anchorage for another day, I finally made it to Dutch.  The weather cooperated (which is not the case more often than not), and we landed on Dutch Harbor after a quick refueling stop in King Salmon.  Since we landed after 8pm, we went straight to one of the few restaurants in Dutch Harbor and had a late dinner before heading to the Oscar Dyson for the night.

My flight after landing in Dutch Harbor, Alaska!

Sunday morning, we went with several of the scientists out to Alaska Ship Supply to get some gear.  I picked up my obligatory “Deadliest Catch” shirt and hat as all tourists do here in Dutch Harbor. We made three trips to the airport throughout the day to see if some of the science gear and luggage came, but came back disappointed.  On one of our trips to the airport, we had lunch at the airport restaurant.  I had Vietnamese Pho, which is a beef noodle soup, but it wasn’t nearly as good as the Pho my wife makes. :) We also drove up the “Tsunami Evacuation Route” to an overlook where we could see all of Dutch Harbor and the town of Unalaska.  Later, we drove around Unalaska and stopped to check out some tidal pools on our way back to the Oscar Dyson.  In the afternoon, we checked out the World War II museum that was absolutely fascinating!  I did not know Dutch Harbor was bombed by the Japanese and that so many American soldiers were stationed in the bunkers surrounding the harbor.  For dinner, I had black cod (sablefish) at the Grand Aleutian Hotel.  Yummy!

Overlooking Dutch Harbor after driving up the Tsunami Evacuation Route.

Monday we embarked on our adventure shortly after noon.  We had to leave the dock because another ship was scheduled to offload there in the afternoon.  The scientists’ equipment arrived on a late Monday morning cargo flight, but they didn’t make it to the ship on time!!! We couldn’t go to sea without them, so we deployed the “Peggy D” to go pick them up and bring them aboard!

The Peggy D brings our scientists Rick and Kresimir with their long-awaited research equipment to the Oscar Dyson so we may head out to the Bering Sea!

Once we had our missing scientists, we left the safety of Dutch Harbor and ventured into open water.  On our way, we saw dozens of humpback whales!  None of the whales breached (jumped out of the water), but several of them fluked (dove and put their tail out of the water).

A couple of humpback whales spotted as we were leaving Dutch Harbor.

We started our day and a half journey to get to the starting point of our survey transects (the end point of last month’s survey).  On our trip out, we experienced 6 to 10 ft seas and a 25 knot wind.  It was a “gentle” welcome to the Bering Sea, but I struggled to get my sea legs underneath me.  Meclizine is great motion sickness medication, but it sure knocked me out.  I feel better now that I am not taking anything and am used to the rocking deck.  While we made our way to our first transect, we had a couple of emergency drills.  Here I am with fellow Teacher at Sea, Johanna, in our immersion suits as we completed our abandon ship drill.

Relaxing in the lounge after putting on our “gumby” suits.

On Wednesday morning, we began our first transect and did our first trawl along the transect (more on that later).  I learned how to work in the fish lab collecting biological data on the catch we brought on board.  I have been struggling to adjust to both my shift, which is 4am to 4pm, and the fact that the sun sets around 1am and rises at about 7am.

In the fish lab processing Pollock! Did someone order fish-sticks?

Thursday morning I woke on time and observed the survey scientists and crew deploying the CTD (Conductivity, Temperature, Depth) rosette from the hero deck (on the starboard side).

Skilled Fisherman Jim is assisting with deploying the CTD.

We also had beautiful clear skies and I was able to see Venus and Jupiter.  At sunrise, I saw the GREEN FLASH!!!  It was a beautiful start to the day.

A Bering Sea sunrise!

We processed one mid-water AWT (Aleutian Wing Trawl) trawl that was all pollock, then switched to the 83-112 bottom trawl net (83 foot long head-rope and 112 foot long foot-rope) and pulled up a lot of jellyfish with our pollock.

Last night, I finally got a really good night sleep!  This morning (Friday), I watched the CTD deployment again and learned more about the data being collected (more on this later).  No spectacular sunrise this morning as it was the typical gray, foggy weather.  I went up and spent some time on the bridge and Chelsea, our navigator/medic, taught me a lot about the instrumentation used for navigating the ship.  There sure is a lot of technology on board!!!

A picture of the helm with some of the displays the OOD (Officer on Deck) uses to navigate the ship.

From the bridge, we saw a pod of Dall’s Porpoise feeding, splashing around, and moving fast!  We processed another AWT trawl of pollock that had quite a few herring mixed in.  We traveled further into Russian waters than originally anticipated as we tried to identify the northern boundaries of the pollock population to get the best picture of the entire pollock range.  We spotted a huge Russian trawler from the bridge!

A Russian trawler! I took this picture through the lens of the CO’s (Commanding Officer) binoculars.

We then headed south again towards American waters, but needed to do a quick water column profile test.  Since we did not want to stop to drop the CTD again, I got to deploy a XBT (Expendable Bathythermograph)!  After all the talk about safety briefings, the use of ballistics, and outfitting me with every piece of safety gear we could muster, I got ready to fire the XBT!!!  Turns out, when you pull the firing pin, the XBT just slides out of the tube… no fireworks, no big bang… just a small kurplunk as the XBT enters the water.  We all had a good laugh at my expense.  See, scientists know how to have fun!

Safety first!!! All decked out for the “fireworks” of shooting the XBT. My “was that it?” face says it all…

WOW!  So I have just scratched the surface of our voyage thus far!  Next time, I will give you a snapshot of what life was like aboard the ship.

Johanna Mendillo: Greetings from Alaska and the Bering Sea! July 27, 2012

NOAA Teacher at Sea
Johanna Mendillo
Aboard NOAA Ship Oscar Dyson
July 23 – August 10, 2012

Mission: Pollock Survey
Geographical area of the cruise: Bering Sea
Date: Friday, July 27, 2012

Location Data from the Bridge:
Latitude: 63 12’ N
Longitude: 177 47’ W
Ship speed: 11.7 knots (13.5 mph)

Weather Data from the Bridge:
Air temperature: 7.2C (44.9ºF)
Surface water temperature: 7.2C (44.9ºF)
Wind speed: 13.3 knots (15.3 mph)
Wind direction: 299T
Barometric pressure: 1001 millibar (0.99 atm)

 

Science and Technology Log:

Greeting from the Bering Sea!  It was a long journey to get here, complete with bad weather, aborted landings on the Aleutians, a return and overnight in Anchorage, and lost luggage, but it was a good introduction to the whims of nature and a good reminder that the best laid intentions can often go awry.  As O’Bryant students know, our motto is PRIDE and the “P” stands for perseverance, so I simply stayed the course and made it to Dutch Harbor and NOAA Ship Oscar Dyson… only 29hrs late!

In upcoming posts, you will learn a lot about the acoustic technology, statistics, and the engineering know-how behind the trawling process and how it is used to find, collect, and study Pollock populations.  But first, let’s start with splitting open some fish heads!

Now that I have your attention, let me explain.  There are many steps involved in “processing” a net full of Pollock, and I will show you each soon, step-by-step.  I think it would be more fun, though, to jump ahead and show you one little project I helped with that literally had me slicing open fish heads…

Hard at work...

Hard at work…

Here I am preparing and cutting away!  The objective: remove the two largest otoliths, structures in the inner ear that are used by fish for balance, orientation and sound detection.  These are called the sagittae and are located just behind the fish’s eyes.  These otoliths can be measured– like tree rings — to determine the age of the fish because they accrete layers of calcium carbonate and a gelatinous matrix throughout their lives. The accretion rate varies with growth of the fish– often less growth in winter and more in summer– which results in the appearance of rings that resemble tree rings!

Time to cut...

Time to cut…

From a small sampling of otoliths, along with length data, projections can be made about the growth rates and ages of the entire Pollock population.  Such knowledge is, in turn, important for designing appropriate fisheries management policies.  Fisheries biologists like to think of otoliths as information storage units; a sort of CD-ROM in which the life and times of the fish are recorded.  If we learn the code, we can learn about that fish!

Can you spot the otolith?

Can you spot the otolith?

For each net of Pollock, we will collect 35 otoliths, which translates to approx. 1,500 otoliths from this cruise alone!  They will be sent back to Seattle and measured under the microscope this fall and winter.

Finished!

Finished!

Personal Log:

Wondering where I am at this very moment?  Check out NOAA Ship Oscar Dyson on NOAA Ship Tracker!

Small things become important when your daily life gets confined to a small space, right, students?  Perhaps some of you have been to sleepover camp and know firsthand?  In a few years, you will also experience communal living in close quarters— in college!  It only seems appropriate that I start by explaining to you (and showing you) my personal space aboard NOAA Ship Oscar Dyson!

First, my stateroom.  This picture shows you that I am in room 01-19-2.  I am on the 01-deck, and there are four other rooms on my hall that house most of the NOAA science team- Taina, Darin, Kresimir, Rick, and Allan.  Allan is my partner in crime- he is the other “Teacher at Sea” (TAS) onboard this cruise; he teaches high school science in Florida!  In addition to the NOAA team, Anatoli is a Russian scientist on board.  These NOAA scientists are based in Seattle in the Midwater Assessment & Conservation Engineering (MACE) group at the Alaska Fisheries Science Center and, depending on their schedules, come out to sea 1-4 times per year to collect data.  They are just one group of many NOAA teams conducting research in the Bering Sea; you will learn much more about the science team in later posts.

My door

My door

Originally, I was going to be bunking with the Chief Scientist, Taina!  However, one of the scientists was unable to join the trip, so Taina has her own quarters and I have mine!  This is quite the luxury, and it is very nice to know that I do not have to worry about waking up a roommate as I get ready for my shift.  Most roommates have opposite shifts, so each person gets at least a little bit of “alone time” in his/her room.  For example, Allan’s shift is 4am-4pm (0400-1600) and Kresimir’s shift is from 7pm-7am (1900-0700).

Here is my bunk!  I chose the bottom one, so if I fall out in rough seas, it is a shorter fall!  One trick- if the seas are rough, take the rubber survival suits and stuff them against the metal frames, so if I do smack against them, there will be some padding!  There is a reading light inside, and I also brought my trusty headlamp and pocket flashlight, so I should be pretty well set on any hasty exit I may have to make- such as for a safety drill!

My bunk!

My bunk!

I also have a desk and a locker, which is a closet for my clothes and other gear.  One thing ships excel at is maximizing small spaces with hooks- I have a row of hooks for my jackets, sweatshirts, hats, etc.  In the head (bathroom), there are many hooks as well.  The other neat trick—the use of bungee cords!  Here is one holding the head door open so it does not swing back and forth as the boat rolls.  They are also used throughout the ship to secure desk chairs, boxes, and any other object that could take flight during rough seas!

See the bungee cord?

See the bungee cord?

Since it is summer here in the high northern latitudes, the days are very long—sunset does not occur until about 12am each night and sunrise occurs around 7am.  The ships provides shades on both the bunks and the port holes (windows) to help people sleep, but as you can see, the earlier tenant in my room even added a layer of cardboard!

My window...

My window…

There are a few other features that help define life at sea.  The shower curtain has magnets to help secure it to the walls.  As you can see, it is a pretty tiny shower, and that handle could become essential if I chose to take a shower and then the seas turn rough!   The medicine cabinet locks shut, and if you leave it open, the door can swing during a big wave and smack you in the face!  Lastly, the head includes special digesting bacteria, so you can only use a special cleaner that does not kill them by accident!  There is a very powerful FLUSH noise that takes a little bit of getting used to as well– it scared me the first time I heard it!

Spot the shower handle...

Spot the shower handle…

That about does it for our first tour.  Please post a comment below, students, with any questions at all.  In my next post, I will give you a tour of the second most important area in daily life— the mess, where I eat!

Amanda Peretich: Meet My “Mates”, July 19, 2012

NOAA Teacher at Sea
Amanda Peretich
Aboard NOAA Ship Oscar Dyson
June 30 – July 18, 2012

Mission: Pollock Survey
Geographical area of cruise: Bering Sea
Date: July 19, 2012

Location Data
Crowley pier, Dutch Harbor, Alaska

Personal Log
Today’s post is going to be about all of the people on board the Oscar Dyson for leg 2 of the pollock survey as I’ve spent the entire cruise with them. You’d think that being on a ship this size, I’d see all of these people all the time, but due to different shifts (the ship operates 24/7), sometimes I wouldn’t see people for days. I’ve really enjoyed working with and getting to know everyone, and hope that all of my questions and photos weren’t too annoying. This is a great group and I was absolutely blessed to spend 19 days on board with them. I’ve learned more than I ever thought I could and am extremely grateful for this amazing adventure. WARNING: this is a long post! There are 32 people on board (including myself), with so many good stories to tell and not enough time to tell them all.

Just a quick background on a few things:

Rankings and abbreviations in NOAA Corps (which are also the same as in the Navy)
ADM (admiral)
CAPT (captain)
CDR (commander)
LCDR (lieutenant commander)
LT (lieutenant)
LTJG (lieutenant junior grade)
ESN (ensign)

A somewhat incomplete flowchart showing the relationship between various organizations and departments related to NOAA

Flowchart

A somewhat incomplete flowchart showing the relationship between various organizations and departments related to NOAA

Now, onto the “bios” and fun facts, stories, or lessons learned …

1. CO (Commanding Officer): CDR Mark Boland
The CO is originally from Rapid City, South Dakota where he attended the South Dakota School of Mines and Technology to earn his degree in Electrical Engineering. He also earned a master’s degree in Engineering Management from the University of Anchorage, Alaska. Commander Boland joined NOAA Corps in 1990 and has worked his way up to the Commanding Officer over the years. When I first arrived in Dutch Harbor, I was out to dinner one night, had never met him, and he tells me that he’s found an article in one of those tourist magazines just for me. Okay, so I may not have had on an Alaska Ship Supply sweatshirt like everyone else, but I didn’t think I stuck out that much! He then tells me he’s the CO and I said “Oh, I’m the Teacher at Sea Amanda” to which he responds that he already knew that. The article? The difficulty of retaining teachers in rural areas of Alaska. A good read and sad truth.

2. XO (Executive Officer): 1st Mate Kris Mackie
Kris (often referred to as Mackie) has been on the OD since March 2011, following 13 years on the Miller-Freeman. He was born and raised in Ketchikan, AK, which is predominantly a fishing and logging community. He worked some odd jobs (like painting little Indian sculptures that were made in Korea and later sold as “authentic Alaskan totem poles”) and then worked at Alaska Ship and Dry Dock as a journeyman painter and sand blaster before working on the Miller-Freeman. The thing Mackie most misses is relationships (they are pretty hard to have when you spend so much time at sea) and says he will probably drive a boat another 15-20 years. His most memorable experience? Working in ice in the Alaskan waters. For students, Mackie recommends NOAA Corps because you can retire after 20 years or becoming an engineer because you can have both land and maritime assignments, both with good pay.

3. OPS (Field Operations Officer): LT Matt Davis
Matt (originally from Michigan) earned his B.S. in aerospace studies from Embry-Riddle in Arizona and his M.S. in math from Eastern Michigan. After joining NOAA Corps, he was assigned to the Miller-Freeman, based out of Seattle, WA. After 3 years, his land assignment was in the Channel Islands (off the coast of Santa Barbara, CA) to be in charge of operations for 2-3 small contractors. The OD is his second boat assignment and he has been here since January. Fun fact: Matt and Dave (see below) hiked in Akutan, Alaska during the last in-port between Leg 1 and 2 of this Pollock survey. They flew there in the amphibious “Grumman Goose”, which is an eight-seater sea plane that lands in the water and then goes right up on the dock because Akutan does not have a landing strip due to the steep terrain. Matt taught me an incredible amount of information during this cruise and I’m very much appreciative of everything I learned.

4. SO (Safety Officer): ENS Dave Rodziewicz
Dave grew up in the western suburbs near Chicago. He started off in the Coast Guard Academy for 2 years studying mechanical engineering before transferring to the University of Chicago Illinois to study Finance and Economics. After spending two years in an office analyzing stock, he joined NOAA Corps and actually wanted his ship billet in Alaska because it’s been “one big extended adventure”. In the future, he may do something with economics and an environmental focus, but for now he’s preparing for his shore duty (land billet) in Boulder, Colorado. Dave is very outdoorsy and most misses climbing. His favorite BOTC (Basic Officer Training Class) experience was “circumnavigating Manhattan” in small boats and his best adventure was hiking Grand Teton in Wyoming. Fun fact: Dave and Matt hiked in Akutan, Alaska right before we left for this leg of the survey (see more above with Matt Davis). During the trip, Dave actually got some sun and has a nice resulting farmer’s tan on his arms. Dave has also seen a large portion of the movies on board, tends to go for more of the thought-provoking movies (in my opinion), and is very knowledgeable about cinematic pictures.

5. Navigation and Medical Officer: ENS Chelsea Frate
Chelsea is originally from Connecticut and went to SUNY Maritime Academy in NY where she earned her B.S. in environmental science. She then went to BOTC and has been on the OD since December for her first ship assignment. She chose NOAA so that she could “sail on [her] license and utilize [her] major”. On board, she does medical, navigation, and environmental compliance. She most misses summer, even though she wanted to be in Alaska. She also misses tanning, but said that the highlights here are super cheap! The hardest part of her job is when the internet is slow and Facebook won’t load (and that she really does love her job). The one thing she does not want to ever do is dive school. Before we left Dutch, Chelsea invited me to go kayaking and she even joined me and Brian Kibler jumping in the freezing Alaskan waters at the end of our kayaking trip (for a very brief minute)!

6. JO (Junior Officer): ENS Libby Chase
Libby (who totally reminds me of my awesome friend Lesley) is fresh out of BOTC, just arriving on OD at the same time as me (although she’ll be here much longer than I will). She’s originally from “Bahh Haaabar” (Bar Harbor) and was appalled that I didn’t know that was in Maine. She has two dogs that she absolutely loves and totally misses. Libby is former Navy, having served 6 years on active duty (stationed in Oahu, Hawaii). During her next four years in the reserves, she went to Maine Maritime Academy and earned a B.S. in marine biology. She plans to stay in NOAA Corps until she retires (especially since she already has 7 years in with her Navy time). As a JO, she works 4 hours on the bridge, 4 hours off watch (where she reads manuals, standing orders, SOPs, etc.), 4 more hours on the bridge, and 12 hours off. Her favorite sea creature is the octopus (which is way better than any sort of crustacean according to her), and one of the other guys on board has nicknamed her Bright Eyes. I’ve also had plenty of fun on various scavenger hunts for EEBDs and fire extinguishers with Libby and plan to mail her a homemade otolith necklace as thanks when I get back to Maryland!

7. ENS Kevin Michael
Kevin is also straight out of BOTC (he was in the same BOTC class with Libby) but he’s originally from Arkansas. He went to Arkansas Tech University, where he has an associates in nuclear technology and a bachelors in mechanical engineering with a minor in math. After graduating in May 2011, he started a NOAA Corps application in June and then work as a nuclear engineer at Arkansas Nuclear One in August until he began BOTC in February 2012. Kevin is on OD for Leg 2 of the Pollock survey as a survey tech and should be working up on the bridge for Leg 3 before heading to Newport, Oregon to work at MOC-P (Marine Operations Center – Pacific) to await a final ship assignment. He’s a super hard worker and constantly doing something on board! Kevin didn’t see the ocean until he was almost 13 when he went to Padre Island, he drinks whole milk regularly, and he uses funny terms like “son of a bache” (Alexander Dallas Bache was important in NOAA Corps history). He’s also been enjoyable company in the fish lab during a majority of my shift and during meal times.

8. CME (Chief Marine Engineer) Brent Jones
Brent is from Kentucky but just recently moved to Delaware, where his wife lives while he’s at sea. He has worked for various companies over his lifetime, including Exxon shipping and then MSRC (Marine Spill Response Corporation), which is basically like the “firefighters” for an oil spill (such as the Exxon-Valdez incident). He then worked for Harrah’s Casino as their chief engineer. Harrah’s uses all in-house wiring, so it was a high stress job to keep everything up and running 24/7. Even though they worked 14 days on, 14 days off, they worked in 12 hour shifts and had to do 50 hours of unpaid community service (concerts, fights, etc.) each year. If there was a meeting on your off days, you still had to go in for it. Brent just came to the OD from the NOAA Pisces and stays very busy down in the engineering rooms. He also showed me all about the incinerator on board that they use to burn our trash. It can reach temperatures above 1200°C (2192°F) and will burn aluminum and such down to nothing but a little ash. Brent has been a USCG (U.S. Coast Guard) licensed chief marine engineer for 34 years. During his career, Brent has worked from Greenland to Punta, Chile and has seen 72 countries!

9. 1AE (1st Assistant Engineer) Tony Assouad
Tony is originally from Lebanon but went to school and college in Dubai. He worked for an oil company there for over 26 years, where he worked his way up from 3rd to 2nd to 1st and chief engineer. He has worked on LPG (liquid pressurized gas), crude oil, benzene, natural gas, and chemical ships. Fun fact: liquid pressurized gas is the same thing in lighters – think about how they work! Around 1990, he almost joined the army, but since the army couldn’t work it out for his wife to come from Dubai to live on base with him, he never signed on the dotted line. He’s been with NOAA for 6 years on 14 or 15 ships, where he goes to fill in for a missing 1AE or chief engineer position. His favorite part of ship life is when things are made easy. The coolest place he’s ever been is the south of France on one of the oil ships because it was near Monte Carlo, Nice, and the border to Italy.

10. 2AE (2nd Assistant Engineer) Vincente Fernando
Vincente is from the Philippines where he earned a bachelor’s degree in marine transportation with a marine engineering major. He has been on the OD since December 2011 after briefly working on the Pisces and Okeanos Explorer. He’s fairly new to NOAA after spending 20 years with the Norwegian JJ Ugland Company. Vincente actually has four engineering licenses: one in the US, one in the Philippines, one in Panama, and one in Norway! His job as the 2nd AE is to be in charge of fuel, generators, separators (water & fuel), boilers, and the noon reporting (of fuel consumption over the past 24 hours). He has a wife that lives in Pennsylvania and two kids that are a nurse practitioner and pharmacist.

11. 3AE (3rd Assistant Engineer) Robert Purce
Robert is always running around the ship on the opposite shift from me, so I didn’t get a chance to sit down and interview him. However, I did enjoy the conversations we’d have in the hallways and engineering spaces. You could always find him with a smile on his face.

12. EET (Engineering Electronics Tech) Terry Miles
Terry is another member of the engineering crew that is always running around working. He has two kids in their twenties, he’s incredibly smart, and he knows a ton about the OD. He’s always been that person to investigate how and why things work, so his job on board is right up his alley.

13. JUE Garry Guice
Ah yes, another engineer that was always moving around and hard to get a hold of on board. Garry is a great guy, fun to talk to, always looking out for people, and a hard-worker. He’s also a great pool player!

14. GVA (General Vessel Assistant) Joel Gabel
Joel (who grew up in the suburbs of Detroit, Michigan) served 6 years active duty in the Navy where he was discharged as a disabled American veteran. He worked in the automotive manufacturing plants for 18 years before heading back to college. He was hired in the engineering department in July 2011 as a general vessel assistant (GVA) on the OD and he is currently working towards a rating test for QMED (qualified member of the engineering department). The GVA position on NOAA ships is an entry level position in general (like a working apprentice for all departments aboard a ship). There are three departments a GVA can work in: deck, engineering, or steward, all with the potential to move up in rating and pay scale. On the Dyson, Joel is under the direction of a licensed engineer where he cleans the ship’s engineering spaces, fabricates items needed on occasion for the ship, makes rounds in all engineering spaces for anything out of place, and takes care of the ship’s sewage problems if they arise. Joel also employs some chemistry by treating the sewage with chlorine dosage tablets and measuring the pH level to determine if the effluent is good to pump overboard. He most misses being away from family and seeing his grandchildren grow up so quickly. He loves to take them out fishing on their lake and see the brightness in their eyes, but at least all of the kids and grandkids have wonderful stories of Joel working on a ship and fishing with them as a family. Joel is looking forward to taking off about two months after we arrive back in Dutch to go back home and see his family. He also plans to go back to college and finish a mechanical engineering degree.

15. Chief Scientist Neal Williamson
Neal said he was going to let me interview him before we got back to shore, but it never happened. Neal has been coming on the Dyson for the hydroacoustic research for quite some time. He taught me a ton about the scientific research going on and never hesitated to answer my million questions. Fun fact: I have taught Neal how to “Dougie” even if he didn’t approve our Shore Party to St. Matthews! It’s okay though because he’s been an amazing person to work under during this adventure J

16. Scientist Bill “Jackson” (name has been changed to protect his identity)
Bill is from Oregon and has been working in fisheries for more than 30 years. He actually works in field operations at both PMEL and AFSC and has been coming on the OD for quite some time. His best experience onboard was when he was on a Korean boat and his most interesting “find” was a kilo of hash off the east coast in a trawl (on a different ship). Bill likes to pass time sleeping, eating, playing cribbage, avoiding photos, and making a Steamboat Willie “woot woot” sound with the hand motion. Bill also tried to hide from me on multiple occasions, but I always found him!

17. Scientist Scott Furnish
Scott is originally from Spokane, WA but has lived in Seattle for 22 years. He is part of the midwater assessment half of MACE and serves as an IT specialist (and really also an electronics guy). His electronics training comes from his time with the Air Force reserves. After studying aviation maintenance at a community college, he worked as an aircraft mechanic for a few years. He joined NOAA in 1990. Scott typically comes on about 4 cruises a year and has plenty of side projects when he’s not working on the acoustics lab computers, hydrophones, transducers, cameras, and everything else. He most misses his family (wife and two kids) and his golden retriever. Scott is also pretty great at playing cribbage and does an excellent job of explaining things.

18. Scientist Denise McKelvey
Denise grew up in Oregon and has been working with NOAA “forever and a day”. She is a fish biologist with MACE in Seattle and completes about 4 ship trips during a season. She originally wanted to be an oceanographer but learned about tuna fishermen and decided she wanted to do some sort of science to help keep the fisheries going instead of just “research for research’s sake”. Denise has done a little bit of everything throughout her life and has an incredible thirst for knowledge. She always seems to be in a great mood, so you can’t help but smile around her. The first day I arrived in Dutch Harbor, she really wanted to go watch some locals fishing and find out all about their fish and what they were catching (which we did). She works on the opposite shift from me doing the same thing that Neal does during my shift so unless I stay up late, I don’t get to see her all too much. While on board, Denise most misses blueberries and straight from the market fresh produce.

19. Scientist Carwyn Hammond
Carwyn (who is also my awesome roommate that I rarely see because we are on opposite shifts on board) is originally from Brooklyn, NY but then moved to Massachusetts, Rhode Island, and has been in Seattle for 11½ years. She has done a little bit of everything and knows a ton about everything it seems. She came out west as part of AmeriCorps to research salmon habitat restoration and continued with contract field work in salmon spawning surveys (snorkeling in glacial-fed rivers) and in electrofishing surveys. She works in conservation engineering on both NOAA ships and commercial vessels as part of her job and travels about 2 months a year for work and 1-2 months for fun. She specializes in fishing gear research, using camera and sonar to look at fish behavior in relation to gear and she would love to get on a boat someplace warm. Carwyn most misses her own bed and true free time when on board. She also has an amazing music selection on her iPod!

20. Scientist Anatoli Smirnov
Anatoli is from the Russian city of Vladivostok, where he is the head of the Pollock lab in the Pacific Scientists Oceanography and Fisheries Center. He spends about 3-5 months at sea, depending on the year, and will be on OD for all three legs of the Pollock survey this summer. In Russia, they do research on the other side of the International Date Line. Anatoli has been married for 34 years and has one daughter. His English skills are improving daily as he walks around with his Russian-English dictionary! His hobbies include fishing on the river for salmon and other freshwater fish and hiking. He’s also taught me a few phrases in Russian and how to properly sex pollock.

21. Science Intern Nate Ryan
Nate is originally from Iowa and is getting ready to start his fourth year at Lawrence University (population about 1,400) in Appleton, Wisconsin (which is apparently the home of cranes) where he is working to get his bachelors degree in biology. As part of an alumni placement program at Lawrence, Nate’s mentor (Anne Hallowed, the head of stock assessment and a senior scientist) landed him a summer internship at AFSC in Seattle, which is what allowed him to be on the OD for this leg of the pollock survey. Although school keeps him incredibly busy, Nate likes to read and hang out with friends. The coolest place he’s ever visited is Iceland (which, did you know, is not covered in ice). In the future, he might go to grad school, wants to go to China, and eventually “settle down someplace at some point”. I’ve definitely enjoyed playing both cribbage and rummy with Nate, even when I was losing. He also told me to make up something fun for his bio, so fact or fiction: Nate is an amazing scrapbooker!

22. Science Teacher at Sea Amanda Peretich
This whole blog is about me, so hopefully you’ve figured out who I am J If not, check out my first post on who I am!

23. Senior Survey Tech Kathy Hough
Kathy grew up outside of Philadelphia, PA and went to the College of the Atlantic in Bar Harbor, Maine. Pursuing her interest in marine science, she earned her B.A. in Human Ecology and moved out west pretty much right after graduation. She worked on a bottlenose dolphin project in Monterey Bay, CA and then began working with NOAA in 1998. She originally worked for the Protected Resources Division under SWFSC where she began as a marine mammal observer. The coolest species she has seen is the North Pacific right whale outside of Kodiak because they are so endangered. While on board, she most misses her cat. Kathy is the Senior Survey Tech on the Oscar Dyson, so she makes sure all of the data going into the scientific computing system is working properly and assists the science party with any and all of the survey equipment.

Mercator

A mercator plot showing lines of longitude
(from http://www.colorado.edu/geography/gcraft/notes/mapproj/gif/mercator.gif)

24. CB (Chief Boatswain) Willie Sliney
Willie is originally from Miami, FL but has been fishing in Kodiak since 1980. He has been on the OD for 8 years as a plank owner. This means that he’s been on the ship since it was christened. The OD is the first of five in the FSV (fisheries survey vessel) class, and it is FSV 224. In 5th or 6th grade, Willie wrote a report on Kodiak, Alaska and decided he wanted to go there. So he joined the Coast Guard, which has an air station in Kodiak, and was able to travel all over Alaska for four years before he started in the fishing industry. Not only did Willie graciously allow me to operate the oceanic winch for a CTD and “shoot the doors” during a trawl, he also taught me one morning a little more about some major lines of longitude, also known as meridians.

The lines of longitude run up and down from the north to south pole on a globe. The degrees are related to the Greenwich mean time, which is at 0º. The international dateline (IDL) is at 180º. If you look on the map below, we started near 54ºN 166ºW. This standard map that we are most familiar with is called a Mercator projection because it has 0º in the middle and 180º on either side. Oh, and there are different maritime certificates and line crossing ceremonies that occur for things like crossing the equator (Order of the Shellback), crossing the Arctic Circle (Order of the Blue Nose), and crossing the IDL (Golden Dragon). They are scheduled to cross the IDL on the next leg of this survey!

25. LF (Lead Fisherman) Patrick Kriegh
Patrick grew up in Philadelphia and joined the Coast Guard for four years so he could get to Alaska. Now he calls Kodiak home and has been on OD for 5½ years. He knew the ship’s namesake Oscar & Peggy Dyson and was able to come on board as the lead fisherman. Before NOAA, he worked in commercial fishing and construction. Commercial fisherman will get their “cut” based on the size of their catch versus NOAA ships where you get paid a set amount regardless of any of that. Patrick thinks the show Deadliest Catch should really be called Dumbest Catch because it’s all drama and pretty unrealistic (a common idea on this boat). He’s also really into snowmobiling. Patrick showed me a good number of breathtaking photos from all of his outdoor adventures, and I am incredibly jealous of all that he’s been able to see. In line with some song, Patrick says “I’ve seen everything on the bottom of the sea because I dragged it across the deck and sorted it!” Patrick also celebrated his birthday during this in-port!

26. AB (Able Bodied Seaman) Rick Lichtenhan
Rick is an extremely hard worker and was on the noon to midnight shift. Although I never formally sat down to interview him, I was able to talk with him during mealtimes when I’d crash the “deck crew” table.

27. SF (Skilled Fisherman) James Deen aka Deeno
Deeno is from Seattle and has been aboard the OD since July 2011. His dad is a fisherman so he’s been on boats since he was 11 and started working as a deck hand when he was 13 or 14. After high school, he went to Seattle Maritime Academy to become an able bodied fisherman (or AB). Following his 90-day sea term internship on the OD, he stayed on as a SF. Deeno has two brothers (one older, one younger) and likes to play Xbox. People refer to him as Deeno, which makes me think of Dino the dinosaur from the Flintstones (only based on the name, not because he looks like a purple dinosaur)! He’s pretty quiet but that’s because he’s such a great listener. After this leg, he’s taking some vacation to travel around Denmark, Norway, and more with his girlfriend. Deeno was definitely a very enjoyable meal companion on the multiple occasions I crashed his table.

28. SF Jim Klapchuk
Jim is on parole from Michigan and has been on the OD for 2 years. This is more of a second career for him as he used to be a forest firefighter and worked in the Florida Everglades during the winters and in Fairbanks (the “Golden Heart” of Alaska) during the summers. In Florida, he would catch alligators that were in campgrounds and around people and transport them to different locations, similar to what is often done with black bears in the Smoky Mountain National Park in Knoxville, TN (where I’ve been living the past 6 years). They would also catch a lot of exotic animals when people would get them as pets and release them into the wild for one reason or another. He saw mostly pythons but some anacondas and more. They would take them to the park biologists to dissect and determine what they were eating and if their presence may be disrupting the natural ecosystem. Jim has also fished on the Great Lakes and first worked on the NOAA Fairweather (out of Ketchikan, AK) for 2 years. Oh, and completely kidding on him being a parolee – that’s what he had planned to tell me to mess with me, but decided against it J

29. GVA Brian Kibler aka Kibbles
Brian is from Seattle, WA and went to Seattle Maritime Academy with Deeno to get his AB after high school. He has only been on the OD for two months but after 90 days, he will have his AB. Brian grew up on boats and used to go fishing with his dad a lot. He’s very much into the outdoors, so he enjoys wakeboarding, camping, mountain biking, rocking climbing, snowboarding, surfing, and anything adventurous. He’d much rather take a girl indoor skydiving than to dinner and a movie for a first date, although he said the hardest part of ship life is that there are no women. Even though he says there’s not much in Dutch Harbor, the coolest place he’s ever been is Pyramid Peak (in Dutch). Someone told him that Dutch had a pretty girl behind every tree and when he arrived, he was like “where are all the trees?!” because there are truly only a handful of trees. Brian was one of the first people I met from the Dyson in the Anchorage airport while on standby on the way to the ship. Since our shifts overlapped for a large portion of time, I’ve definitely enjoyed hanging out with and getting to know him over the past few weeks.

30. ET (Electronics Tech) Vince Welton
Vince is originally from Oregon and he is the electronics tech on board. He literally deals with ANYTHING electronic: computers, radar, phones, internet, etc. He worked as a DOD employee for 13 years doing Doppler radar for the B1 aircraft in Oklahoma. He was also in active duty air force 4 years, mostly stationed in Carswell, TX, but having temporary duty in Guam as well. With NOAA, he works both on the boat and also on land (but communicating with someone else on board). He misses his wife of 14 years and hunting the most, but enjoys the solitude of ship life because it “fits [his] personality”. The best animal he ever killed was a 9-point rack elk. He also enjoys other outdoors-y things like gold panning and hiking. Vince also taught me why the internet on board is shoddy when we are travelling north between about 330º and 350º, which deals partly with the layout of the ship and partly with the curvature of the Earth that blocks the signal between the ship and the satellites. When it comes to communicating with others aside from online, we have access on board to MRSATB (data & phone), Iridium (just voice), and VOIP (voice over internet protocol). If you aren’t careful when dialing out on the VOIP, you could potentially call 911 from a Maryland number, but they can’t come help us in the Bering Sea!

31. CS (Chief Steward) Tim Ratclif
Tim, originally from Indiana, is an amazing chef (which is not to be confused with a cook). He went to Coast Guard cooking school in Petaluma, CA and cooked in the Coast Guard for 9 years. After that, he spent 10 years all over the place from Indiana to Las Vegas, in restaurants, hotels, casinos, and more. He’s been working with NOAA for the past year and has delighted ship crew with his delicious cooking on the Delaware, Okeanos Explorer, Ron Brown, and now Oscar Dyson. He makes scrumptious food “with buckets of love” and has taught me the big three seasonings: salt, pepper, and garlic. His clam chowder is also to die for. He really likes the show 24 and Dexter (amongst others), has a Harley-Davidson and a house in Myrtle Beach, Virginia, and doesn’t have a favorite meal. But if he was on death row, he’d request his last meal to have “local fresh grown asparagus because it takes three years to grow!” (yep, it does – I checked it out online) and a grilled steak. On board, he most misses his part chow, part Australian Sheppard dog Buffy (named after Buffy the Vampire Slayer). Tim is super sarcastic, but in a good way, and his cooking (and nagging/encouragement to try tons of food) ensured that I visited the gym on a regular basis!

32. 2nd Cook Adam Staiger
Adam could always be seen helping Tim out in the kitchen, washing dishes, or cleaning up in the galley. Between meals, you could often find him in the TV lounge either watching a movie or taking a nap.

blog crew photo

Photo with the Oscar Dyson crew and scientists on Leg 2 of the Pollock survey of the Bering Sea in July 2012

Amanda Peretich: My First Love (Chemistry and Other Stuff), July 16, 2012

NOAA Teacher at Sea
Amanda Peretich
Aboard Oscar Dyson
June 30, 2012 – July 18 2012

Mission: Pollock Survey
Geographical area of cruise:
Bering Sea
Date:
July 16, 2012

Location Data
Latitude: 58ºN
Longitude: 175ºW
Ship speed: 10.2 knots (11.7 mph)

Weather Data from the Bridge
Air temperature: 8.2ºC (46.8ºF)
Surface water temperature: 6.4ºC (43.5ºF)
Wind speed: 9.9 knots (11.4 mph)
Wind direction: 221ºT
Barometric pressure: 1022.6 millibar (1.01 atm, 767 mmHg)

Chemistry Lab

Chemistry Lab on the Oscar Dyson

Science and Technology Log
Throughout some of my previous posts, I’ve hinted at the amount of science on board the Oscar Dyson. Of course, I got super excited any time I saw something more on the chemistry and physics side of things versus the biology side, mostly because although I love biology, chemistry is definitely my first love. Thus today’s science and technology log will be to share just a few of the gazillion ties to chemistry that I’ve found in the past few weeks.

  1. Cathodic protection system
    Seawater is more corrosive than freshwater and will corrode the steel on the ship, so the Cathelco seawater pipework anti-fouling system on board works to prevent that corrosion from happening. Cathodic protection controls corrosion by making the metal surface the cathode of an electrochemical cell.

    Cathelco

    Cathelco cathodic protection system to prevent ship corrosion.

    Fluorometer

    Fluorometer and TSG on the Oscar Dyson.

  2. Fluorometer
    The fluorometer on the Oscar Dyson is used to measure both chlorophyll and turbidity (cloudiness) of the sea water using fluorescence technology. There is an intake on the keel of the bow that pumps water aft into the chemistry lab where it first goes through a debubbler to remove any excess air and then it goes through the fluorometer and TSG (see next point). Measuring the amount of chlorophyll is a good indication of plant life and thus the amount of phytoplankton and other species in the food chain. This data is also stored on the SCS and available for scientists to use.
  3. Thermosalinograph (TSG)
    Another device that the sea water passes through from the underway system is the TSG. This measures both temperature and conductivity (how much electricity passes through) in the water. There is a fancy mathematical equation that is then used to determine salinity in PSUs, or practical salinity units.
  4. Needle gunning and more
    When we aren’t letting out a net or hauling back in a net, the deck crew work on various things for upkeep around the ship. One day at dinner, they were discussing something called needle gunning. Never having heard of this, I was immediately intrigued, to which Deeno kept telling me “it’s nooooot really that exciting”. Wrong! It’s basically this pneumatic device (something using compressed air) that has a bunch of little rods (needles) in a circular pattern that, when turned on, seems to feel like a jackhammer as the needles press against the surface at quick speeds. They use it on various ship surfaces to clean off rust and corrosion. Following the needle gunning, they can then apply a layer of corroseal rust converter which reacts with any rust (iron oxide) to oxidize and convert it a more stable substance (magnetite) that turns black. After this, they are free to add primer and 2 part paint (different than the paint you’d use at home) to keep things on board looking great and not corroding away.
Needle Gunning

Needle gunning (left) and preparing for painting (right) on the Oscar Dyson.

Personal Log
I’ve been working on my last blog coming up on all of my ship mates since almost the first day on board the Oscar Dyson. Be sure to check it out in a couple days! But before that, I’d like to share some of the fun things I’ve learned or taken note of since we left Dutch Harbor that didn’t really fit nicely anywhere else.

Lingo I’ve Learned

Hawse Pipe

The hawse pipe, through which the anchor is raised and lowered, on the Oscar Dyson.

* hawse pipe: someone who has worked their way up on a vessel, from deck crew to the bridge (1st mate, 2nd mate, executive officer (XO), etc.); this is in reference to the pipe on a ship through which the anchor chain is fed – for example, XO Kris Mackie worked his way up the hawse pipe to get to where he is today
* ringknockers: someone out of NOAA Corps BOT-C (basic officer training class)
* scuttlebutt: rumor or gossip on board; this comes from the idea that a butt (cask) of water that has been scuttled (deliberately “sunk”) so that water could flow, similar to a water fountain, was a place around which people would convene to gossip

Dog All Dogs

Dogging the door.

* dogging the door: handles on various doors on board are fastened to seal it

* leeward: the side of the vessel that is not facing the wind, which changes sides based on wind direction
* windward: the side of the vessel that is facing the wind

Leeward

Kenny reminding you to use the leeward side when opening doors

(wet and dry bulb temperature readings are taken on the bridge hourly on the windward side)
* fantail: another name for the aft deck
* “wagging the tail”: used when the person on the bridge is adjusting various things on the ship to evenly wrap the chains onto the reel when hauling in a trawl
* “alls balls”: refers to midnight, which is 0000 in military time
* head: bathroom/toilet

Weird Facts/Thoughts That Don’t Fit Anywhere Else
- I remember I’m on a male-dominant vessel when the toilet seat in the community head outside the fish lab is always up (there are 3 community heads: one right near the fish lab, one in the gym, and one outside medical – these are used so you don’t have to disturb your roommate while they are sleeping in the room)

- The above fact is okay because the head has the BEST green hand soap in the world with moisturizing beads and a wonderful aroma – sometimes I just go wash my hands in there for the sake of it, which is fine because there are also signs everywhere reminding you to wash your hands

- It doesn’t matter what time of day it is, if I walk into the TV lounge, I will more than likely sit down and watch part of whatever movie is on

- Still in dealing with the TV lounge, the rule on board is that once you start a movie, you have to let it go all the way to the end, because some people on board have TVs in their room hooked up to the movie channels and may be watching it

- There are three movie players: 2 “tape decks” with these 8mm cassette tapes and 1 special DVD player for the NAVY movies and close to 1,000 movies to choose from!

- I’ve watched more movies since I’ve been on board than I probably have watched in the past year combined (although some were parts of movies that I walked in on after they’d started or had to leave early from to fish)

- The internet works via a signal from a geostationary satellite (GE23 at 172 degrees E on the equator) so as we are travel, the receiver on board must look south for signal such that when we are traveling north-northwest, the mast and stack of OD get in the way of the signal and we have no internet

- I could actually make short phone calls using VOIP (voice over IP), but this slows down the internet and you had to limit your calls to 10 minutes or so – it also shows up on the receiving end as a Maryland phone number because that’s where NOAA is located

- My favorite place to just go relax is actually up on the flying bridge – rarely do people go up there (it’s super windy) but when it’s nice outside (also a rarity), it is a beautiful view of nothing but the Bering Sea (and plenty of birds) – just have to make sure to let the officer on deck (OOD) know you’re going up there

Fun with KNOTS
One day, Brian and ENS Kevin attempted to teach me how to tie a bunch of different knots. I have a good idea how my students feel when they don’t understand a concept that seems so easy to me because both guys were just like “you do this this this and this and you’re done” and there I was, back on the first step, completely lost.

I did learn the bowline (which is not pronounced “bow-line” like you’d think, but rather more like “bo-lin”) and the one-handed bowline. Kevin even taught me the dragon bowline, where he tied a bowline knot and dragged it on the floor – get it? :)

Knots

Some of the knots I learned to tie on board.

Some other knots I learned: figure 8, square, clove hitch, timber hitch, daisy chain, and becket. Could I repeat those for you today? Possibly, but probably not.

Scavenger Hunt
One of the jobs of the safety officer is to check the Ocenco EEBDs (Emergency Escape Breathing Device) on board to make sure they have not expired. ENS Libby (who just came to the Oscar Dyson on this leg of the pollock survey from NOAA Corps BOT-C) and I went on a scavenger hunt one night to find all of these EEBDs around the ship (aside from the ones inside staterooms). Some of the folks that have been on here for a while laughed a little because I was so excited to go on this little adventure – but it teaches a good lesson: things will only be as exciting as you let them! I also decided to make Libby a scavenger hunt for other random things with clues to the room they were in. She only found one of the three, so no prize for her this time. We also plan to go on a scavenger hunt for fire extinguishers soon!

EEBDs

Hunting for EEBDs (left) with ENS Libby (right).

Cribbage

Good times with cribbage.

Cribbage
Two of the guys in the acoustics lab, Bill and Scott, were constantly playing this card game with a red, white, and blue wooden board that looks sort of like a race track. They would lay out cards, count random numbers, and move these pegs in a fashion that I totally did not understand, no matter how long I sat and watched them. Finally, I stayed up later after my shift one night and Carwyn (my roommate) taught me how to play cribbage (she’d taught the science intern Nate to play the previous night). All of the other scientists are really good at this game, so Nate and I started playing each other as the newbies. We are both getting much better at it (although I ultimately came up with the winning record by the end of the cruise)! One of these days, I hope to be as quick with the counting as Bill and Scott. I even taught Libby how to play last night, although she much prefers rummy, which she then taught me how to play.

Animal Love
Two new animals I’ve seen recently: the crested auklet (this little guy landed on board and stuck around a little over a day near the bow of the ship) and a whole lot of Pacific herring that we caught in the net the other day (which I’ve renamed Vegas fish because they are so sparkly and glittery like Vegas lights).

Crested Auklet

Crested Auklet (Aethia cristatella)

Pacific herring

Pacific herring (Clupea pallasii)

Johanna Mendillo: Alaska Bound! July 13, 2012

NOAA Teacher at Sea
Johanna Mendillo
Aboard NOAA Ship Oscar Dyson
July 23 – August 10, 2012

Mission: Pollock Survey
Geographical area of the cruise: Bering Sea
Date: Friday, July 13, 2012

Introductory Blog 

Hello everyone!  It is finally time– I am getting ready for my journey to sea.  What a journey this will be!  To Alaska, and the Bering Sea, to be exact.  I am very excited to share this work with you– both on the blog this summer and back at school in the fall.  As I learn more about NOAA, my ship (the Oscar Dyson), and the research work on Pollock, so will you!

First off, the basics.  What do you know about Alaska?  The Bering Sea?  The species Pollock?  If you are like me, there are probably a million or so questions on each running through your head.  So, those are the three topics I began to research first.  Here is what I learned:


Alaska:

Alaska is a vast and fascinating state.  It will also be the 40th state I visit!

Map of Alaska and Bering Sea

Map of Alaska and Bering Sea

State Capital: Juneau, located in the Southeast region of Alaska, has a population of 31,275 (according to the 2010 Census)

The Name: “Alaska” is derived from the Aleut word “Alyeska,” meaning “great land.”

State Flower: The forget-me-not!

State Gem: Jade.  Alaska has large deposits, including an entire mountain of jade on the Seward Peninsula!

State Mineral: Gold!  Perhaps I will find some on my journey?  Gold has played a major role in Alaska’s history.

State Tree: The tall, stately Sitka spruce; it is found in southeastern and central Alaska.

State Fish: The huge king salmon (also called Chinook), which can weigh up to 100 pounds.

Fun Fact: Secretary of State William H. Seward arranged for the United States to purchase Alaska from Russia in 1867 for $7.2 million dollars— or 2 cents per acre!


The Bering Sea

The Bering Sea, a northern extension of the Pacific Ocean, separates two continents- Asia and North America.  Covering over two-million sq. km (775,000 sq mi), the sea is bordered in the west by Russia and the Kamchatka Peninsula; in the south by the Aleutian Islands; in the north by the Bering Strait and the Arctic Ocean; and in the east by Alaska.  It is the third largest sea in the world and home to some of the richest fisheries in the world!

There is a donut in the Bering Sea?  Well, not exactly, but there is “The Donut Hole”—let me explain.  The Western side of the Bering Sea, out to 200 miles from shore, is Russian territory, and the first 200 miles offshore on the Eastern side belongs to the United States.  The section in-between, which lies 200 miles out from the coastlines of both countries, is known as “The Donut Hole,” and is considered international waters.  This area comprises 10% of the Bering Sea.

Fig. 1

Bering Sea “Donut Hole”

Now, as I had mentioned above, the Bering Sea is one of the world’s most productive fishing grounds, producing huge quantities of king crab, salmon, pollock, and other varieties of fish.  In addition, it is home to vast quantities of wildlife, including many species of whales, walrus, and millions of seabirds!  I can’t wait to take lots of pictures and videos for you to see!

Now, when many folks think of the Bering Sea, they think of the TV show “The Deadliest Catch”!  Are any of you fans?  Well, it is true that the Bering Sea is one of the most dangerous bodies of water in the world, and waves can easily reach 30-40 feet high.  Let’s hope we do not encounter too many of those this summer!


Pollock

OK, so here is perhaps your first look at a Pollock!

Plenty of pollock!

Plenty of pollock!

Did you know:

  • Pollock has consistently been one of the top five seafood species consumed in the U.S.
  • Since 2001, U.S. commercial landings of Pollock (primarily in Alaska) have been well over 2 billion pounds each year.
  • Pollock are mid-water schooling fish that can live up to 15 years.
  • All Pollock is wild-caught in the ocean.  There is no commercial aquaculture for this species.

The wild fishery for Alaska Pollock, also known as Walleye Pollock, is the largest by volume in the United States and is also one of the largest in the world!  If you are a fan of fish sticks, chances are you have eaten Pollock!  FYI, Alaska Pollock is a different species than the Pollock found on the Atlantic coast.

It is primarily harvested by trawl vessels, which tow nets through the middle of the water column.  Some vessels are known as catcher/processors because they are large enough to catch their own fish and then process and freeze them at sea.  Other vessels deliver their catch to mother ships (at-sea processing vessels that do not catch their own fish) or to shore-side seafood processors.

Pollock is a high protein, low fat fish with a mild-flavor and a delicate and flaky texture.  Because of its adaptability, Pollock is consumed in a variety of forms that include fresh and frozen fillets, fish sticks and other breaded and battered fish products, and “surimi” products.

What is surimi, you ask?  Surimi products are formulated to imitate crab, shrimp and scallop meat and then marketed in the U.S. as imitation crab, shrimp or lobster.  They are often the “seafood” in seafood salads, stuffed entrees, and other products!  Surimi is produced by mincing and washing Alaskan Pollock fillets and then adding other ingredients to stabilize the protein in the fish and enable it to be frozen for extended periods of time.  Alaska Pollock fillets or mince is also frozen into blocks and used to produce fish sticks and used in a variety of products in fast food restaurants.

The Pollock fishery is highly regulated by the U.S. Federal government through the National Marine Fisheries Service (NMFS) and the North Pacific Fishery Management Council (NPFMC).  On the Eastern end, the Russian State Fisheries Committee handles government oversight.  Annual catch limits (called quotas) and seasons are set for Pollock fisheries, and limits are also set for bycatch species that may be caught unintentionally when fishing for Pollock.

In the next few days, I will continue to learn and prepare, so please send me any questions you’d like and leave comments below!  My next post will be from Alaska…stay tuned!

Story Miller, July 20, 2010

NOAA Teacher at Sea: Story Miller
NOAA Ship: Oscar Dyson

Mission: Summer Pollock III
Geographical Area: Bering Sea
Date: July 20, 2010

Time: 1240
Latitude: 53°51N
Longitude:166°34W
Wind: 7 knots (approx. 8.055mph)
Direction: 202° (SW)
Sea Temperature: 9.22°C (approx. 48.596°F)
Air Temperature: 9.82°C (approx. 49.676°F)
Barometric Pressure (mb): 1023.8

Scientific Information

Figure 1: View of the low fog, clouds and sunset in Dutch Harbor the night of the delay.

What Is NOAA and How Can You Get Involved?
NOAA stands for the National Oceanic and Atmospheric Association and is part of the United States Department of Commerce. NOAA is involved around the world and there are many different avenues one could become involved with. For example, some people are involved in forecasting the location of the next hurricane strike, which means that you could be responsible for saving the lives of people living in those areas. If climate change is of a particular interest, you could aid in the monitoring of global weather systems to make climate predictions for the future. If ecological studies suit you, a job with NOAA could involve collecting data from costal environments to continue efforts of preserving healthy ecosystems. Perhaps your studies and data analysis would aid in the critical decision making processes of businesses around the world, such as creating and enforcing policies for the fisheries industry to maintain its resources for the future.  Mapping is equally important and part of your experience with NOAA could involve creating or enhancing navigational data to aid in the protection of ships and prevent potential accidents. Finally, perhaps you are interested in commanding a NOAA ship or piloting a NOAA aircraft. In that case, you could become part of the NOAA Corps.

The Mission

The primary mission of the Oscar Dyson is the Walleye Pollock survey, which consists of conducting Acoustic Surveys and Fishery Survey Trawls. The acoustic survey relies on sonar waves that are powerful enough to detect fish at different depths. Once the fish is located on the sonar screen, the trawl net is then accurately deployed to a specific depth depending on where the targeted fish species are located. This depth can range from 16 meters from the surface all the way down to 3 meters from the bottom.  The net is then hauled onto the ship’s aft deck and the contents are spread on the table in the lab for sorting and identification. Different species, such as the Walleye Pollock, will be measured for size, sex, and age before being released overboard. Some other species like Pacific Cod and Arrowtooth Flounder will be collected for additional studies.

Delays, Delays!

Monday, July 19th appeared to be a rare, sunny day in Dutch Harbor for most of the afternoon. We were scheduled to leave Dutch Harbor at 1500h but due to baggage problems for those who recently arrived in Dutch Harbor, we were delayed until the next day. Because of the short airstrip in Dutch Harbor, the sizes of the airplanes are smaller than those of regular airports. Currently Pen Air uses SAAB Turboprop airplanes. These planes are small and hold about thirty passengers. They are typically used for small air carriers for short commutes.  Another critical factor involved with flights is weight. For every passenger, think of the additional weight of all the bags each person has. Most people fly with one or two bags, each weighing 50lbs or less and in our case, some people also had additional bags carrying scientific equipment.

Figure 2: A typical foggy day in Dutch Harbor, Monday, July 19th, 2010

Weight in an airplane causes the plane to use more fuel and smaller airplanes cannot carry as much fuel as the other airplanes, such as Boeing 737 aircraft, commonly used for longer commutes by larger airlines. Because of the distance between Anchorage and Dutch Harbor, full flights generally need to make a stop in the small villages of King Salmon or Cold Bay to refuel. Other difficulties faced by the airport in Dutch Harbor are that the airstrip is a “daylight only” landing zone and the weather can be quite hazardous. Winds reaching up to 90 mph are not uncommon and in the summer, low fog becomes a visibility issue. If the pilots do not have a specific range of visibility, they cannot land. Therefore, the necessity of refueling in Cold Bay or King Salmon is critical because many times when the plane reaches the airport and hazardous weather conditions are preventing a safe landing, the airplane must have enough fuel to circle the airport in hope for a sliver of time when landing conditions are safe and, if necessary, enough fuel to fly all the way back to King Salmon or Cold Bay. Again, weight is an issue in the fuel consumption of an airplane and therefore, on full flights, the airplane must sometimes “bump” bags, which means that sometimes your checked bag will not make it on the flight you are on and will be scheduled on a later flight. This of course isn’t a bad plan except that the weather in Dutch can change from one extreme to the next in a matter of fifteen minutes. In our case, to add to the difficulty of getting our bags, it was explained to us that because the air had become warmer, it lessened the lift on the airplane which was another reason why the planes did not carry very many bags that day. With all these important technicalities, one could maybe understand why flying into Dutch Harbor can be difficult. Therefore, some people have successful flights and others experience the “flight to nowhere” which involves flying part or the entire three hours to Dutch Harbor, circling or waiting in Cold Bay, and then flying back to Anchorage. One could say that you are not a local until you have experienced this situation a few times!

Personal Log:

My first day on the boat proved to be interesting as I quickly learned my way around the ship. I sometimes make the analogy of myself being like a rat in a maze trying to find the cheese. In a way it is accurate because the cook on board has made some fantastic dinners and I’ve been successful at finding the mess hall by simply following my nose! For supper on Monday night, we had a buffet-style dinner and I was pleasantly surprised with the menu as I helped myself to prime rib and king crab legs!

Figure 3: Me in front of the Oscar Dyson, Monday, July 19th, 2010 (notice the extreme weather change!)

On Tuesday, we were able to get underway at approximately 1300. Before pulling away from the dock, we needed to test our FRB (Fast Rescue Boat) to make sure it was functional in the possible event of an emergency. Once we knew the FRB was functional, we hauled it back onto the boat. As soon as we began to move, I went to the flying bridge (the highest deck on the ship) to catch a glimpse of Dutch Harbor and to watch the local birds sitting on the water. Most of the birds I saw were tufted puffins. I always find them amusing because if you get near them when they have eaten too many fish, they try to fly away but their belly is too heavy. Therefore they simply skim over the water, wings flapping intensely, and bellies dragging over the top of the water!

Figure 4: Lead Fisherman Dennis Boggs and Skilled Fisherman Mike Tortorella testing the FRB

Some advances in healthcare that I am extremely excited about is that I have found a seasickness medication that does not knock me out in under 5 minutes and that works for a long period of time. Thank you Meclizine!
Currently we are underway and have approximately 381 miles northwest to travel before we make our waypoint which will take approximately 28 hours. As of right now, my job has been to get acclimated to the ship. Work will begin Thursday at sunrise, about 0700).  My current shifts will run from 0400h to 1600h each day. I cannot wait to begin the first part of my assignment!

Animals Spotted By Me Today:
Blackfooted Albatross
Tufted Puffin
Seagull
Sea Otter
Fur Seal

Something To Ponder:
Regarding NOAA fish surveys, such as the Pollock Survey I’m participating in, what impacts would the scientific information collected have on the fishery industry regarding revenue and long term success?

Amanda Peretich: More Trawling Treasures, July 11, 2012

NOAA Teacher at Sea
Amanda Peretich
Aboard Oscar Dyson
June 30, 2012 – July 18 2012

Mission: Pollock Survey
Geographical area of cruise:
Bering Sea
Date:
July 11, 2012

Location Data
Latitude: 58ºN
Longitude: 173ºW
Ship speed: 11.7 knots (13.5 mph)

Weather Data from the Bridge
Air temperature: 7.9ºC (46.2ºF)
Surface water temperature: 7.3ºC (45.1ºF)
Wind speed: 10.7 knots (12.3 mph)
Wind direction: 323ºT
Barometric pressure: 1007 millibar (0.99 atm, 755 mmHg)

Science and Technology Log
In a recent post, I talked about how one of the things we are doing on board the Oscar Dyson is trawling for fish. The video from that post showed what happens in the fish lab during a midwater trawl. Remember that there are two nets we have been using for a midwater trawl: first, the normal Aleutian Wing Trawl, or AWT, which catches plenty of pollock, but also the 83-112 to which adjustments are being made to use this bottom trawl net for midwater fishing. But what about using the 83-112 for its original purpose: bottom (or benthic) trawling?

Bottom Trawl

83-112 Bottom Trawl Net

The 83-112 net used for bottom trawls (and comparison midwater trawls on this ship).

I’ve been lucky enough to see two bottom trawls on this cruise, although neither of them were actually during my shift. My wonderful roommate Carwyn, one of the other scientists on board, came to tell me about the bottom trawls so I could see all the neat creatures from below! A bottom trawl is used when the pollock are swimming much lower in the water column for one reason or another, but in trying to catch them, there are always many more “trawling treasures” that find their way onto the fish table. The process is basically the same as a midwater trawl, except the 83-112 net is lower down in the water towards the bottom of the sea floor (hence the term bottom trawl). The net is also much shorter in length than the AWT using in midwater trawling.

DYK?: How do the scientists know exactly how far down the net is in the water column? One of the sensors attached to the net is called the SBE (Seabird) 39. This will measure the depth and temperature during the trawl and determine the average head rope depth (which is the top of the net) and average temperature during the trawl between EQ (equilibrium – start of the trawl) and HB (haul back – end of the trawl). The sensor is then uploaded on the computer and the data is used by the scientific party.

Headrope Haul 76

This plot is used to determine the average head rope depth and temperature during the trawl (between EQ and HB). Depth is measured in meters and temperature in degrees Celsius on the y-axis versus time on the x-axis.

Field Guides

Field guides to classify various species found in the Pacific Ocean.

I attempted to classify all of these great bottom trawl treasures, and discovered that this was way easier said than done. There are some books in the fish lab with photos and descriptions just of the species that may be found around the Alaskan waters, and it was incredibly difficult to nail down a specific species for most of the finds!

In the bottom trawl, we found things such as the Oregon hairy triton, an unidentified pretty purple star fish, pink shrimp, basket stars, sheriff’s star, halibut, crabs, pacific cod, sculpin, Pribilof snail, sea anemone, scallop, sponge, sea pens, arrowtooth flounder, flathead sole, chiton, and seaweed.

Enjoy the slideshow below with photos of the bottom trawl treasures (and an interesting fact or two about some of them) or click on the link to open it in a new window!

Bering Sea Bottom Trawl Treasures

Methot Trawl

Methot Net

Methot trawl net.

The other trawl we’ve done outside of the normal AWT (Aleutian Wing Trawl) midwater and 83-112 midwater comparison trawl is something called a methot trawl. This uses a completely different net because the others have mesh that is much too large to catch something so small. The methot net has very fine mesh and a hard square opening with a fixed height. The cod end (very end of the net) is actually a small white container because the organisms collected are so small. A methot trawl is done to collect euphausiids, otherwise known as krill. Sometimes other microscopic (small) organisms are collected as well, including jellies, salps, and amphipods, which must then be carefully sorted out.

DYK?: Krill are part of the phylum Arthropoda, which includes species with an exoskeleton and jointed legs such as spiders, crabs, insects, and lobsters. They are an important part of the ecosystem because these small, reddish-orange animals are a source of food for many larger animals.

Steps to process a methot trawl in the fish lab:
1. Dump contents of the hard cod end container into a large gray bin.
2. Remove any large jellyfish (and weigh those separately).
3. Rinse contents from the gray bin into the sieve to remove any water.
4. Using tweezers, sort through the small microscopic organisms on the sieve and remove anything that isn’t krill.
5. Weigh krill sample.
6. Collect a random subsample in a scoop and weigh it.
7. Count all of the krill in the subsample (yes, this is as tedious as it sounds!).

Processing a Methot

Processing a methot trawl: removing water with the sieve, sorting through all of the krill and pull out any amphipods, salps, or jellies with tweezers (to weigh separately).

Personal Log

Bowthruster

Heading down to check out the bowthruster on the Oscar Dyson!

It continues to be a little slow on the trawling during my shift, but that’s okay, because I was lucky enough yesterday to get a tour of some of the lower bridge levels from the 1st Assistant Engineer, Tony.

DYK?: There are 8 levels on the Oscar Dyson. They are numbered, starting from the topmost deck, as follows:
O4 – flying bridge
O3 – bridge
O2 – staterooms (CO, XO, chief scientist)
O1 – staterooms (scientists), CTD winch, FRB (fast rescue boat), Peggy D (boat), liferafts
1 – galley, labs (acoustics, chem, dry, fish)
2 – engineering (machinery, centerboard, oceanic winch, trawl winch, and more), staterooms (deck crew and then some)
3 – engineering (machinery, bilge/ballast, workshop, and more)
4 – bowthruster, transducer, fuel oil tanks, ballasting tanks

I plan to share some of the facts I learned related to chemistry and biology from this tour (and other things on board) in one of my next blogs, so be sure to look for all of the info on the generators, sea water purification, MSD, cathodic protection system, and more.

We did have two trawls yesterday (July 10) – the first was an AWT midwater trawl that had caught so many fish it was actually a “splitter”! In a splitter, there’s an extra step between hauling in the net and getting it to the table in the fish lab. The cod end of the AWT net is opened over a separate splitting crate, where there is another net underneath that will only take about half of the fish to release on the table. The rest are then returned to the water.

Splitting

Splitting an AWT midwater trawl that collected too many pollock.

We also had drills yesterday (these are required once a week) and after gaining permission from the bridge, I checked in to my muster station (which is in the conference room for the science party, away from all of the action) and then went and watched what everyone else on board does. When we have fire drills in school, the alarm sounds, we walk outside, and wait for the “all clear” before heading back in. When they have fire drills on the Oscar Dyson, they use a smoke machine to produce smoke, there is an on-scene crew (first responders), there may or may not be a “victim” involved, the hose team actually dresses out (with the help of another person on the alpha or bravo firefighting teams), and the fire hoses are actually used. It may seem like old hat to everyone else on board, but I found it incredibly interesting to watch!

Fire Drill

Fire drill (smoke in the oceanic winch room) on board the Oscar Dyson.

Following the fire drill, there was an abandon ship drill, where everyone on board grabs their survival suit, PFD, and heads to one of three life rafts (there are actually 6 on the ship). The CO had me stay up in the TV lounge so that my life raft (#5) wouldn’t have a “full muster” until they sent out a search party to find me. Just as there are two people on hose team in both alpha and bravo for the fire drill, people must go in pairs for the search party, so Patrick and Rick came and found me. I think some people thought I’d actually not heard the alarm (I was wearing headphones), but I was instructed to be up there! We will have one more day of drills before we get back to Dutch Harbor, so maybe I’ll actually don my bright orange survival suit, which other Teachers at Sea in the past have affectionately called the “gumby suit” (even though Gumby was green).

Animal Love
In yesterday’s AWT midwater trawl, we had a new visitor in the fish lab. Introducing the lumpsucker!

Lumpsucker

Me (left) and ENS Libby (right) showing some love for a lumpsucker (middle).

The lumpsucker is in the family Cyclopteridae, which is derived from Greek words that mean circle and fin in reference to their round-shaped pectoral fins. There is a sucker on the bottom of them, so when we put this little sucker in some sea water while we were processing the fish, he stuck himself to the bottom of the container! Lumpsuckers are poor swimmers, so they are mostly benthic, meaning they stay at the bottom of the sea floor. However, that doesn’t mean they are incapable of swimming (especially since this one was caught during a midwater trawl). We took some photos and tossed this little guy back to sea, so hopefully he makes it!