Theresa Paulsen: Getting my Hands Dirty with Data, March 24, 2015

NOAA Teacher at Sea
Theresa Paulsen
NOAA Ship Okeanos Explorer
March 16 – April 3, 2015

Mission:  Caribbean Exploration (Mapping)
Geographical Area:  Puerto Rico Trench
Date:  March 24, 2015

Weather from the Bridge:  Scattered Clouds, 26.6˚C, Wind 10kts from 100˚, Waves 1-2ft, swells 2-3ft

Science and Technology Log

Now that the interns have been trained in data collection and processing, it was my turn to learn.

Mapping Intern Chelsea Wegner taught me how to launch an XBT and how to process the data gathered by the multibeam sonar. It is a fairly simple procedure that requires diligent record keeping in logs.  I processed four “lines.” A line is about one hour of data collection, or shorter. Two of my lines were shorter because the sonar had to be turned off due to a whale sighting! This is bad for data collecting, but AWESOME for me! Again, I missed it with the camera, though.

Mapping Instructors

My Mapping Instructors: Intern, Chelsea Wegner; Expedition Coordinator, Meme Lobecker; and Mapping Watch Lead, Jason Meyer.

I have also been given the task of using a sun photometer to measure direct sunlight over the ocean as part of the Maritime Aerosol Network, a component of AERONET, a NASA project through the Goddard Space Flight Center.  Every two hours when the sun is shining and there are no clouds in the way of the sun, I use this tool to measure the amount of sunlight able to penetrate our atmosphere.

Using the Sun Photometer

Using the Sun Photometer

I use a GPS to determine our location and transfer that information to the sun photometer.  Then I scan the sunlight with the photometer for about 7 seconds and repeat 5 times within two minutes.  Keeping the image of the sun in the target location on the photometer while standing on a rocking boat is harder than it may look!

Sun Photometer

The little bright light in the dark circle above my right hand is the image of the sun.  It must remain in the center of the traget circle during a solar scan.

According to the Maritime Network, the photometer readings taken from ground level helps determine the Aerosol Optical Depth, meaning the fraction of the sun’s energy that is scattered or absorbed while it passes through the earth’s atmosphere. The reduction in energy is assumed to be caused by aerosols when the sunlight’s path to earth is free of clouds.  Aerosols are solid or liquid particles suspended in the atmosphere.  Sea-salt is a major contributor over the ocean as well as smoke and dust particles from land that are lifted and transported over the oceans.  There are many stations over land that collect this data, but using ships is also important because the data is used to provide “ground truth” to satellite measurements over the entire earth, including the oceans.  The data is also used in climate change research and aerosol distribution and transport modeling.

Aerosols in our Atmosphere

“This portrait of global aerosols was produced by a GEOS-5 simulation at a 10-kilometer resolution. Dust (red) is lifted from the surface, sea salt (blue) swirls inside cyclones, smoke (green) rises from fires, and sulfate particles (white) stream from volcanoes and fossil fuel emissions.” (NASA,Goddard website)
Image credit: William Putman, NASA/Goddard

It is pretty cool to be part of such an interesting project!  The people here are interesting too.  I thought I’d highlight some of their stories in my next few blogs.

Career Profile of Intern Chelsea Wegner

Chelsea’s story is a great example for high school students.  She graduated from a high school in Virginia that is similar in size to Ashland High School, where I teach.  Her family enjoyed spending time near the ocean and had a library of books about ocean adventures.  Her grandfather served in the Navy on Nuclear Submarines and liked to build models of ships.

Chelsea Wegner reading "My Father, the Captain:  My Life with Jacque Cousteau"  by Jean Michel Cousteau  in her free time.

Chelsea Wegner reading “My Father, the Captain: My Life with Jacque Cousteau” by Jean Michel Cousteau in her free time.

In high school, her career interests began to take shape in her Environmental Science in Oceanography class.   She went to college at the University of Mary Washington in Virginia majoring in environmental science with particular interest in geology and river systems.  She took advantage of a research opportunity studying sediment transport from rivers to the coast during her undergraduate career.  She took sediment core samples and analyzed them to determine human impacts, contamination, and dated the sediment layers.  She took more research courses that took her to the US Virgin Islands to conduct a reef survey, identifying and counting fish.  She described that as a pivotal experience that led her toward her Masters Degree in Marine Science.  Her Masters thesis project was a coastal processes study the potential effects of sea level rise on coral reefs and the corresponding coastline.  She used the connections she had in the US Virgin Islands and in her university to fund and/or support her research.

After competing her Masters Chelsea applied for a marine science and policy fellowship, the Knauss Fellowship, which allowed her to work as an assistant to the Assistant Administrator of Oceanic and Atmospheric Research (OAR) within NOAA, Craig McLean, for one year.  Through this fellowship, Chelsea traveled the world to places like Vietnam, the Philippines, New Zealand, and France getting a first-hand look at how science informs marine policy and vice versa.

Chelsea learned early on that experience matters most when trying to make yourself marketable.  That is why she is here now serving as a mapping intern.  She takes the opportunity to learn every piece of equipment and software available to her.  She is a rising star in the world of science.  After this voyage, she will begin her new job as a program analyst at OAR headquarters working in the international office handling engagements with other countries such as Indonesia and Japan.  And she is only 28!

Did You Know? 

At 10 AM this morning there was tsunami drill, LANTEX (Large Atlantic Tsunami Exercise) on the east coast from Canada all the way down to the Caribbean.   So students in schools inside Tsunami-threatened areas likely participated in evacuation drills.  The test is part of NOAA National Weather service Tsunami Warning Program.  It helps governments test and evaluate their emergency protocols to improve preparedness in the event of an actual tsunami.

Question of the Day

3 responses to “Theresa Paulsen: Getting my Hands Dirty with Data, March 24, 2015

  1. Hi Deanna,

    Great Question! A sextant is a device that uses mirrors to accurately measure the angle a star or the sun is above the horizon. By measuring two celestial bodies, some tables and triangulation, you can determine your position on the earth. Here’s a link to learn more. (It has pictures!)
    How a Sextant Works – PBS
    Thanks for followinng!
    Mrs. Paulsen

Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s