Cristina Veresan, Icthysticks and Otoliths? August 9, 2015

NOAA Teacher at Sea
Cristina Veresan
Aboard NOAA Ship Oscar Dyson
July 28 – August 16, 2015 

Mission: Walleye Pollock Acoustic-Trawl survey
Geographical area of cruise: Gulf of Alaska
Date: Sunday, August 9, 2015

Data from the Bridge:
Latitude: 59°28.8’ N
Longitude: 145°53.2’ W
Sky: Rain
Visibility: 7 miles
Wind Direction: SSE
Wind speed: 13 knots
Sea Wave Height: 1-2 feet
Swell Wave: 3 feet
Sea Water Temperature:  16.0°C
Dry Temperature:  14.5°C

Science and Technology Log

Our wet lab is outfitted with novel technology that makes processing the catch much more efficient. All of our touchscreen computers in the wet lab are running a program, designed by MACE personnel, called Catch Logger for Acoustic Midwater Survey (CLAMS). Once we enter the haul number and select the species that were caught, most of the data populates automatically from the lab instruments. For example, the digital scale is synced with the computer, so the weights are automatically recorded in CLAMS when a button is pushed. Also, an electronic fish measuring board called the “Icthystick,” designed by MACE IT specialist Rick Towler, is used to measure fish lengths. The fish’s head is placed at one end of the measuring board; when you place a finger stylus (with a magnet mounted inside it) at the end of the tail, the length is automatically recorded in CLAMS. The CLAMS system creates a histogram (type of graph) of all the lengths measured, and scientists archive and review this important data.


The CLAMS program records our catch


The “Icthystick” AKA “Fish Stick” Photo by Darin Jones


A digital scale connected to the CLAMS system

What can fisheries scientists learn from a pollock’s ear bones? The ear bones, called otoliths, have layers that can be counted and measured to determine the fish’s age and growth over the years of its life. Fish otoliths are glimpses into the past and their layers of proteins and calcium composites can sometimes offer clues about climate and water conditions as well. For our sub-sample of pollock, in addition to length, weight, and sex data, we will remove and archive the otoliths. We have to slice into the head and extract the two bony otoliths with forceps. The otoliths are then placed into a vial of ethanol with a bar code that has been scanned into the CLAMS system and assigned to the individual pollock they came from. Therefore, when all the otoliths are sent back to the lab in Seattle, ages of the fish can be confirmed. We sometimes collect other biological samples as well. In Seattle, there are scientists working on special projects for certain species, so sometimes we take a fin clip or an ovary sample from fish for those colleagues.


After a slice is made across the head, the otoliths can be removed with forceps


The otoliths in glycerol thymol (the bar code is on the opposite side of the vial)



Shipmate Spotlight: An interview with Rick Towler 


Rick Towler, IT Specialist Photo by Darin Jones

What is your position on the Oscar Dyson?
I am an IT Specialist at MACE. I spend about 4 weeks total at sea and the rest of my time in our Seattle office. I have been in my position for 11 years.

What training or education do you need for your position?
My background is in wildlife biology, but I have had a lifelong interest in computers and electronics. I was lucky enough to get an internship with a physical oceanographer and started writing data analysis software for him. That got me on my career path, but for the most part, I have taught myself.

What do you enjoy the most about your work?
I love the freedom to creatively solve problems. There’s a lot of room to learn new things in my position. Like when we started on the “Icthystick” I had never done any electronics like that but I was able to innovate and make something that works. The scientists provide the goals and I provide the gear!

Have you had much experience at sea?
No, I get seasick! I am usually the first to go down with it. Before I joined MACE I had no real sea time. When I get sick, I just have to rest and take medication. I am so lucky that this leg of the survey has been very calm.

What are your duties of your position in Seattle and at sea?
In general, I write software and design and develop instruments to help us do our job better. Along with my colleague, Scott Furnish, I am also responsible for installing and maintaining the equipment used during the survey. When at sea, I make sure all the data is being backed up. I respond to any equipment issues and fix things that are not working properly.

When did you know you wanted to pursue a marine career?
I did not necessarily know I wanted a marine career, but I knew I wanted to be involved in science. I love that my job now is a mix of natural science and computer technology. It’s important to me to have a job I think is meaningful.

What are your hobbies?
I enjoy family time: playing with my kids and hiking and biking together. I also love playing with my dog and building things with my kids.

What do you miss most while working at sea?
Pizza! And my family and my dog.

What is your favorite marine creature?
Tufted puffin because they are cute. I’m a bird guy.

Inside the Oscar Dyson: The Bridge


The main console (left) and the navigation station (right)

The bridge of a ship is an enclosed room or platform from which the ship is commanded. Our bridge is commended by officers of the NOAA Corps, one of the uniformed services of the United States. From the bridge, officers can control the ship’s movements, radar, IT (information technology), communications, trawling and everything else to operate the ship. Full control of the ships generators and engines is from the engine room, although there is a repeater display, so officers can monitor these systems. In our bridgethere is a main console from which the ship is steered. There are also consoles on other sides of the room, so the officers can control the ship when we are pulling up to the dock or when equipment is being deployed off the stern, starboard side, or port side. There is a navigation station where charts are stored and courses are plotted. For our cruise, courses are plotted on paper charts as well as two different digital charts. The bridge is surrounded by windows and the view is incredible!

Personal Log

Each fish we catch has a particular scent, some more “fishy” than others. But when Darin told me to smell a capelin (Mallotus villosus) I discovered something quite surprising. The small, slender fish smells exactly like cucumber. Or should I say that cucumbers smell exactly like capelin? It is amazing!


Capelin are in the smelt family: I smelt a smelt!

After all these clear sunny days, we had our first foggy one, a complete white out! It gave me an appreciation for the officers that have to navigate through these conditions using radar alone. I also noticed the fog horn sounded every two minutes; Ensign Ben told me that this is a nautical rule when visibility is less than 2 miles and the ship is underway. In between blasts, I scooted out to the bow to take the photo below.


Thick fog surrounded us

I have seen two different whales on my trip so far. I saw one humpback whale from a distance while it was feeding. It was tough to make out the whale itself, but it was easy to spot the flock of birds that was gathered on the water’s surface. I have also always wanted to see an orca whale, and I finally got my chance. It was a fleeting encounter. I had just stepped out onto the deck and saw an orca surface. I raised my camera as it surfaced again and managed to take a picture of the dorsal fin. Unfortunately, our ship and the whale were cruising pretty fast in opposite directions. But it was still a magical moment to observe this amazing creature in its natural habitat.


A feeding humpback whale


A cruising orca whale

Like I have said before, working on a moving platform has its challenges. Even getting around a ship presents a unique set of peculiarities. First of all, most doorways have 4-inch rails on the floor. When you are stumbling down at 4am to begin your shift or excitedly moving outside to see a whale, you have to keep those in mind! Most interior doors are pretty standard, although some come equipped with hooks at the top in order to secure them open. However, the exterior doors are watertight and must be handled appropriately. To open them from either side, you first have to push the lever up and then open the door by the handle. It is really important to avoid placing your hand in the door frame while the door is open because the thick, heavy door would crush your hand is if it swung shut. For this reason, and to keep the ship secure, you also have to remember to close these doors behind you and pull down the lever on the other side. On account of a nearby storm, we are supposed to get some big seas overnight, so now everything must be secured!

Ah, the joys of shipboard living!


(from left) a raised door frame, a latch on the back of a door, and a watertight exterior door

Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s