Denise Harrington: Tenacity – May 7, 2016

NOAA Teacher at Sea
Denise Harrington
Aboard NOAA Ship Pisces (In Port)
May 04, 2016 – May 17, 2016

Mission: SEAMAP Reef Fish Survey

Geographical Area of Cruise: Gulf of Mexico

Date: Saturday, May 7, 2016

Tenacity helps NOAA manage our seafood supply.


Tenacity, otherwise known as perseverance or stamina, is a required skill at the National Oceanic and Atmospheric Administration (NOAA). Aboard NOAA Ship Pisces, we are all anxious to head out to collect data about the type and abundance of reef fish along the continental shelf and shelf edge of the Gulf of Mexico.  However, things don’t always go as planned. Much like the animals we study, scientists must rapidly adapt to their changing circumstances. Instead of waiting for a problem to be solved, fisheries biologists of all ages and experience work in the lab, using the newest, most sophisticated technology in the world to meet our demand for seafood.

As I ate dinner tonight in the mess (the area where the crew eats), I stared at the Pisces’ motto on the tablecloth, “patience and tenacity.”


The Pisces is a “quiet” ship; it uses generators to supply power to an electric motor that turns the ship’s propeller. The ship’s motor (or a mysteriously related part) is not working properly, and without a motor, we will not sail. This change of plans provides other opportunities for me, and you, to learn about many fascinating projects developing in the lab. Sound science begins right here at the Southeast Fisheries Science Center Laboratory in Pascagoula, Mississippi.


Kevin Rademacher, a fishery biologist in the Reef Fish Unit, meets me at the lab where he works when he isn’t at sea. As he introduces me to other biologists working in the protected species, plankton, and long line units, I begin to appreciate the great biodiversity of species in the Gulf of Mexico. I get a glimpse of the methods biologists use to conduct research in the field, and in the lab.

While it looks like a regular old office building on the outside, the center of the building is filled with labs where fish are taken to be discovered.  Mark Grace, a fisheries biologist in the lab, made one such discovery of a rare species of pocket shark on a survey in the gulf. The only other specimen of a pocket shark was found coast of Peru in 1979. Mark’s discovery raises more questions in my mind than answers.

When I met Mark, he explained that capability of technology to gather data has outpaced our ability to process it. “Twenty years ago, we used a pencil and a clipboard. Think about the 1980s when they started computerizing data points compared to the present time… maybe in the future when scientists look back on the use of computers in science, it will be considered to be as important as Galileo looking at the stars” he said. It’s important because as Mark also explains,  “This correspondence is a good example.  We can send text, website links, images, etc…and now its a matter of digital records that will carry in to the future.”

About the quote, what I said was maybe in the future when scientists look back on the use of computers in science, it will be considered     to be as important as Galileo looking at the stars.  This correspondence is a good example.  We can send text, website links, images,     etc…and now its a matter of digital records that will carry in to the future.

How do fishery biologists find fish?


Charlie McVea, a retired NOAA marine biologist, and his trusty assistant Scout, pictured above, learned they may need more sophisticated equipment to locate fish.

Earth has one big connected ocean that covers the many features beneath it. Looking below the surface to the ocean floor, we find a fascinating combination of continental shelves, canyons, reefs, and even tiny bumps that make unique homes for all of the living creatures that live there.  Brandi Noble, one of 30-40 fishery biologists in the lab, uses very complicated sonar (sound) equipment to find “fish hot spots,” the kinds of places fish like to go for food, shelter and safety from predators. Fisheries sonar sends pulses of sound, or pings, into the water.  Fishery biologists are looking for a varied echo sound that indicates they’ve found rocky bottoms, ledges, and reefs that snapper and grouper inhabit.

The sonar can also survey fish in a non-invasive way. Most fish have a swim bladder, or a gas filled chamber, which reflects sonar’s sound waves.  A bigger fish will create a returning echo of greater strength. This way, fisheries biologists can identify and count fish without hurting them.

sonar fish

The circular image shows a three-dimensional map NOAA scientists created from the sonar data they collected about the seafloor and a school of fish.

Ship Pisces uses a scientific methods to survey, determining relative abundance and types of fish in each area. They establish blocks of habitat along the continental shelf to survey and then randomly sample sites that they will survey with video cameras, CTD (measures temperature, salinity, and dissolved oxygen in the water), and fishing. Back in the lab, they spend hours, weeks, and years, analyzing the data they collect at sea. During the 2012 SEAMAP Reef Fish Survey, the most common reef fish caught were 179 red snapper (Lutjanus campechanus), 22 vermillion snapper (Rhomboplites aurorubens), and 10 red porgy (Pagrus pagrus).  Comparing the 2012 data with survey results from 2016 and other years will help policy makers develop fishing regulations to protect the stock of these and other tasty fish.

How do fishery biologists manage all the information they collect during a survey?

Scientists migrate between offices and labs, supporting each other as they identify fish and marine mammals from previous research expeditions.


Kevin Rademacher, at work in the lab.

Our mission, the SEAMAP Reef Fish Survey has been broken into four parts or legs.  The goal is to survey some of the most popular commercially harvested fish in the Gulf of Mexico.  Kevin Rademacher is the Field Party Chief for Leg 1 and Leg 3 of the survey.

Last week, he showed me collections of frozen fish, beetle infested fish, and fish on video. At one point the telephone rang, it was Andrew Paul Felts, another biologist down the hall. “Is it staying in one spot?” Kevin asks. “I bet it’s Chromis. They hang over a spot all the time.”

We head a couple doors down and enter a dark room.  Behind the blue glow of the screen sits Paul, working in the dark, like the deep water inhabitants of the video he watches. Paul observes the physical characteristics of a fish: size, shape, fins, color.  He also watches its behavior. Does it swim in a school or alone?  Does it stay in one spot or move around a lot?  He looks at its habitat, such as a rocky or sandy bottom, and its range, or place on the map.

As you watch the video below, observe how each fish looks, its habitat, and its behavior.

To learn about fisheries, biologists use the same strategies students at South Prairie Elementary use.   Paul is using his “eagle eyes,” or practiced skills of observation, as he identifies and counts fish on the screen.   All the scientists read, re-read and then “read the book a third time” like a “trying lion” to make sense out of their observations.  Finally, Paul calls Kevin, the “wise owl,” to make sure he isn’t making a mistake when he identifies a questionable fish. paul screen

Using Latin terminology such as “Chromis” or “Homo” allows scientists to use the same names for organisms. This makes it easier for scientists worldwide, who speak different languages, to communicate clearly with each other as they classify the living things they study.

I appreciate how each member of the NOAA staff, on land and at sea, look at each situation as a springboard to more challenging inquiry.  They share with each other and with us what they have learned about the diversity of life in the ocean, and how humans are linked to the ocean.  With the knowledge we gain from their hard work and tenacity, we can make better choices to protect our food supply and support the diversity of life on Earth.


This slideshow requires JavaScript.



Spined Pygmy Shark Jaw (Squaliolus laticaudus)

Personal Log

Crew members tell me that every day at sea is a Monday.  In port, they are able to spend time with family and their communities.  I have been able to learn a bit about Pascagoula, kayak with locals, and see many new birds like the least tern, swallow tailed kite, eastern bluebird and clapper rail.  Can you guess what I ate for dinner last night?P1050747





One response to “Denise Harrington: Tenacity – May 7, 2016

  1. Wow! It looksl ike you are learning a lot and having a great time. What interesting information on what goes on aboard a ship like this.

Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s