Denise Harrington: What Fish Do I Eat? October 3, 2016

NOAA Teacher at Sea

Denise Harrington

Aboard NOAA Ship Oregon II

September 16-30, 2016

Mission: Longline Survey

Geographic Area: Gulf of Mexico

Date: Monday, October 3, 2016

I asked Kevin Rademacher, Research Fisheries Biologist at the Pascagoula, Mississippi Lab, what fish I could eat and still support sustainable fisheries.  He answered with a question, “Have you read the book Four Fish?” When I finished reading the book by Paul Greenberg, I spoke to Kevin again. “What do you think now?” He asked.

I said “There is something about wild fish that makes me want to catch and eat them, but I worry about whether we are eating wild fish out of existence.”


Yellowedge grouper (Epinephelus itajara). Photo: Matt Ellis/NOAA Fisheries

“Have you talked with Adam?  He’s the numbers guy,” Kevin said.  It seems like the good teachers are always sending students away in search of their own answers.

Adam Pollack is a contract Fisheries Biologist with Riverside Technology, Inc., and works on the night crew.  We sometimes cross paths at midnight or noon.  Catching him wouldn’t be easy.


Here, Adam measures a shark too large to bring on deck.  Photo: NOAA Fisheries

During one of these transition times, we had a moment to talk.  I asked Adam about his earliest fish memory.  He smiled.  “At about five, I went fishing with my dad.  We had a house in the mountains surrounded by a bunch of lakes.”  Adam and his dad would sit by the lake with their lines in the water “watching the bobber disappear.”  He smiles again.  These little largemouth bass changed his life.


Adam takes a selfie with a red drum (Sciaenops ocellatus).

At first, he was set on becoming a professional bass fisherman but made a practical switch to marine biology.  He took all the science electives and the hardest math classes he could.  He went on to Southampton College on Long Island, New York, where he got lots of hands-on experiences beginning in his freshman year.  He believes a good education should include lots of opportunities, as early as possible, for interactive learning in a real world environment.

Once he graduated, Adam got his dream job: working in the Gulf of Mexico during the field season and then crunching numbers the rest of the year.  He takes the data scientists collect to the SouthEast Data, Assessment, and Review (SEDAR).  SEDAR is a cooperative process through which scientists, fishermen, and policy makers look at the life history, abundance trends, and other data to determine how many fish we can catch sustainably.

Adam, and many others, also look at how catastrophic events like Hurricane Katrina and the Deepwater Horizon oil spill affect marine species in the Gulf of Mexico.  After Hurricane Katrina, he said, shrimping efforts died down by about 40%.  The effects of the oil spill are still a little murky.  Many of the biologists on board initially predicted dire and immediate effects.  Yet unlike the spill in Alaska, the warm Gulf of Mexico water is host to bacteria, plants, and other living things that might be eating up the oil.  Many questions, such as whether these living things will mitigate the effects of a spill, are still being asked. “Deepwater Horizon is always on our minds,” Adam says.  There are also naturally occurring events like harmful algal blooms and long term issues like climate change that affect fish populations.


Oil rigs dot the horizon as Tim Martin, Chief Boatswain, gets ready to retrieve the longline. Photo: Matt Ellis/NOAA Fisheries



Here, Paul Felts, Fisheries Biologist, weighs a yellowedge grouper (Hyporthodus flavolimbatus). Photo Matt Ellis/NOAA Fisheries

“Can you tell me about snapper?” I asked Adam.  Red snapper (Lutjanus campechanus), assessed every other year, is a hot button topic for commercial and recreational fishermen alike in the Gulf. The species was in decline. Recreational fishermen went from a 180 day season to catch fish to an 8 day season and from 10 to 2 fish a day per person.  Commercial fishermen weren’t happy either: they could only take 49% of the year’s quota for red snapper, while the recreational fishermen get to catch 51% of the quota.  Fairness is not just a second grade concern, it is a major sticking point in regulating fisheries world wide.


Snapper is as tasty as it is beautiful.  Photo: Matt Ellis/NOAA Fisheries

Red snapper is a vulnerable species.  Snapper settle to the bottom of the water column from larvae.  They are at high risk of mortality from ages 0-5, the same time when they are close to human activity such as oil rigs, shrimping grounds and easy to access fishing areas.  Those who manage the fisheries are trying to get the snapper through that vulnerable stage.  Like money in the bank accruing interest, a 10 year old snapper can produce more eggs than a five year old.  Before we take snapper from the sea, we must make sure a healthy older population remains to reproduce.


TAS Denise Harrington holds up two red snapper. Photo: Matt Ellis/NOAA Fisheries.

Once an assessment is complete, scientists determine a maximum sustainable yield:  how many fish can be taken from the population and still keep enough around to make more fish for the future.  Take a look at a shark assessment and a snapper assessment. Looking at these long and complicated assessments, I am glad we have people like Adam who is willing to patiently work with the numbers.

Gathering the best data and making it available to people who collaborate to make informed decisions is an important part of Adam’s job. We all want fish and NOAA fisheries biologists are doing their best to make that happen for us, and for generations to come.

Personal Log

My time aboard the Oregon II has come to an end.  Bundled up in my winter clothes,  I look out over a rainy Oregon landscape filled with fishermen hoping to catch a fall Chinook salmon. Two places with different weather and many different fish species.  Yet many of our challenges are the same.

Back at school, students and teachers welcome me enthusiastically.  Instead of measuring desks and books as part of our Engage NY curriculum, we measured sharks and their jaws.  Many of these students have never been out of Oregon, many have not been to the beach, even though it is only 4 miles away.  With NOAA, South Prairie Elementary students were able to learn about faraway places and careers that inspire them.

Soon these seven year old children will be in charge. I am thankful to the NOAA crews and the Teacher at Sea program staff, as they’ve prepared generations of students of all ages to collaborate and creatively face the task that lies ahead.



Denise Harrington: A Shark A Day, September 29, 2016

NOAA Teacher at Sea

Denise Harrington

Aboard NOAA Ship Oregon II

September 16-30, 2016

Mission: Longline Survey

Geographic Area: Gulf of Mexico

Date: Thursday, September 29, 2016

Science Log

The cruise is coming to a close. Looking back at my three experiences with NOAA, hydrography (mapping the ocean), fisheries lab work, or shark and snapper surveys,  I couldn’t decide which was my favorite.  Like the facets of a diamond, each experience gave me another perspective on our one world ocean.

Just like different geographic locations and work, each shark species give me a lens through which I can appreciate the mysteries of the ocean.  Every day, I held, measured, kissed, or released a different species of shark. In the Gulf of Mexico, there are 44 shark species frequently caught.  Fortunately, I saw quite a few, and will share some, in the order in which I met them.

Our first night fishing, we caught many Atlantic sharpnose sharks (Rhizoprionodon terraenovae).  They are named for their long flat snout and sharp nose. It seemed whenever we caught one, a bunch more followed. They were abundant and kept us busy.


Paul Felts, Fisheries Biologist, records measurements while Kevin Rademacher, Fisheries Biologist, wrestles and measures the shark. Matt Ellis, NOAA Science Writer, took amazing pictures throughout the cruise.

Day two, we caught a deep water Cuban dogfish (Squalus cubensis).  



The Cuban dogfish’s huge iridescent eyes were entrancing.

On September 2o, we almost caught a bull shark (Carcharhinus leucas).  We brought the cradle down, but the shark thrashed its way off, refusing to be studied. The bull shark, along with the tiger shark, are “one of the top three sharks implicated in unprovoked fatal attacks around the world.”

Within a couple days of catching the Cuban dogfish, we caught another shark with iridescent eyes. It turns out this similar looking shark was not a Cuban dogfish, but a rare roughskin spiny dogfish (Cirrhigaleus asper).  


Dr. Trey Driggers, Field Party Chief, and prolific shark researcher, surprised us all when he reported this was the first roughskin spiny dogfish he had ever caught!

The beautifully mottled, sleek, immature tiger shark (Galeocerdo cuvier) caught on September 23 had remarkable skin patterns that apparently fade as the shark ages. Adult sharks can get as large as 18 feet and 2,000 pounds.  Along with the bull shark, it is one of the top three species implicated in unprovoked, fatal attacks worldwide.

September 24 we caught a fascinating scalloped hammerhead (Sphyrna lewini).  The flat extended head of this hammerhead is wavy, giving it the “scalloped” part of its name.  Its populations in the Gulf have drastically decreased since 1981, making it a species of concern.



Here, Kevin measures one of several scalloped hammerhead sharks we caught on Leg IV of the survey.

We also caught a silky shark (Carcharhinus falciformis). Like other Carcharhinus sharks, the silky shark has a sharp “Carchar,” nose “hinus” (Greek derivation), but also has a silky appearance due to its closely spaced dermal denticles.


I instantly felt the silky was the most beautiful shark I’d seen. Photo: Matt Ellis/NOAA Fisheries


We  saw two of the three smoothhound species present in the Gulf.  On September 25, we caught a Gulf smoothhound, (Mustelus sinusmexicanus), a species named less than 20 years ago. Much is left to learn about the ecology and biology of this recently discovered shark.


Getting ready to weigh the gulf smoothhound, Kevin Rademacher, Fisheries Biologist, stops for a photo.                                                      Photo: Matt Ellis/NOAA Fisheries

Then, I watched the night crew catch, measure and tag a dusky shark (Carcharhinus obscurus).


Photo: NOAA Fisheries

On September 26, we caught a sandbar shark (Carcharhinus plumbeus).  Despite its size,  the sandbar shark poses little threat to man.


The sandbar shark’s large fin to body ratio and size make them a prime target for commercial fisheries. Photo: Matt Ellis/NOAA Fisheries

Due to over-fishing, sandbar shark populations are said to have dropped by as much as 2/3 between the 1970’s and the 1990’s. They are now making a comeback, whether it be from fishing regulations, or the decreased populations of larger sharks feeding on juvenile sandbar sharks.


This sandbar shark attacked a blacknose shark that had taken our bait. Photo: Matt Ellis/NOAA Fisheries

We tagged many sharks during my two weeks on the Oregon II.  If you never catch one of those sharks again, the tag doesn’t mean anything.  But this week, we also caught a previously tagged sandbar shark!  Recapturing a wild marine animal is phenomenal.  You can learn about its migration patterns, statistically estimate population sizes, and learn much more. The many years of NOAA’s work with this species in particular demonstrates that thoughtful, long term management of a species works.


On September 27, we almost caught a nurse shark (Ginglymostoma cirratum). The barbels coming from its mouth reminded me of a catfish or exotic man with a mustache.

Today, September 29, was our last day of fishing, a bittersweet day for me.  That nurse shark that got away, or more likely, another one like it, came up in our cradle.

Every day we caught sharks, including a few other species not mentioned here.  Only once our line came back without a fish.  The diverse characteristics and adaptations that allow each of these species to survive in a challenging marine environment inspire biologists as they try to categorize and understand the species they research.   While catching so many different species of sharks gives me hope, many members of the crew reminisce about times gone by when fish were more abundant than they are now.

Personal Log

I am the kind of person who always struggles to return from an adventure.  I have learned so much, I don’t want to leave.  Yet I know my class at South Prairie is waiting patiently for my return. I hope to share these many marine species  with my class so that we all may view every moment with curiosity and amazement.





Denise Harrington: Joining the Longline Crew, September 17, 2016


NOAA Teacher at Sea

Denise Harrington

Aboard NOAA Ship Oregon II

September 16-30, 2016

Mission: Longline Survey

Geographic Area: Gulf of Mexico

Date: Saturday, September 17, 2016

Location: 29 2.113’ N  93o 24.5’ W

Weather from the Bridge: 28.9C (dry bulb), Wind 6 knots @ 250o, overcast, 2-3′ SE swell.

Science Log

The muggy afternoon air did not dampen my excitement as we left Galveston, Texas, aboard the National Oceanic and Atmospheric Administration (NOAA) Ship Oregon II.  I am a NOAA Teacher at Sea, participating in a  longline survey in the Gulf of Mexico, surveying sharks and bony fish.


Fellow volunteers Leah Rucker and Evan Pettis and I bid farewell to Galveston. Evidence of human influence, such as development, oil rigs, barges, and ships, is not hard to spot. Photo: Matt Ellis, NOAA

When I tell people about the Teacher at Sea program, they assume I teach high school or college, not second grade in rural Tillamook, Oregon.  Yet spend a few moments with any seven or eight year old and you will find they demonstrate significant potential as scientists through their questions, observations, and predictions. Listen to them in action, documented by Oregon Public Broadcasting, at their annual Day at the Bay field trip.

Just as with language acquisition, exposing the young mind to the process of scientific inquiry ensures we will have a greater pool of scientists to manage our natural resources as we age.  By inviting elementary teachers to participate in the Teacher at Sea program, NOAA makes it clear that the earlier we get kids out in the field, the better.


Each year, my students develop a science or engineering project based upon their interests.  Here, South Prairie Elementary students survey invertebrates along a line transect as part of a watershed program with partners at Sam Case Elementary School in Newport, Oregon.

The NOAA Teacher at Sea program will connect my students with scientists Dr. Trey Driggers, Paul Felts, Dr. Eric Hoffmayer, Adam Pollock, Kevin Rademacher, and Chrissy Stepongzi, as they catch sharks, snapper, and other fish that inhabit the Gulf of Mexico. The data they collect is part of the Red Snapper/Shark Bottom Longline Survey that began in 1995. The survey, broken into four legs or parts each year, provides life cycle and population information about many marine species over a greater geographic distance and longer period of time than any other study of its kind.

Leg IV is the last leg of the survey.  After a long season of data collection, scientists, sailors, and fishermen will be able to return to their families.

My twelve hour shift begins tomorrow, September 17, at noon, and will continue each day from noon until midnight until the most eastern station near Panama City, Florida, is surveyed.  Imagine working 12 hour shifts, daily, for two weeks straight!  The crew is working through the day and night, sleeping when they can, so shutting the heavy metal doors gently and refraining from talking in the passageways is essential.  I got lucky on the day shift:  my hours are closer to those of a teacher and the transition back to the classroom will be smoother than if I were on the night shift.

Approximately 200 stations, or geographic points, are surveyed in four legs. Assume we divide the stations equally among the legs, and the first three legs met their goal. Leg IV is twelve days in duration. How many stations do we need to survey each day (on average) to complete the data collection process?  This math problem might be a bit challenging for my second graders, but it is on my mind.


Mulling over the enormity of our task, Skilled Fisherman Chuck Godwin and I discuss which 49 year old fisherman will end up with more wrinkles at the end of the survey. Currently, I am in the lead, but I bet he’s hiding some behind those shades. Photo: Mike Conway

I wonder what kind of sharks we will catch.  Looking back at the results of the 2015 cruise report, I learned that there was one big winner.  More than half of the sharks caught were Atlantic sharpnose (Rhizoprionodon terraenovae) sharks. Other significant populations of sharks were the blacktip (Carcharhinus limbatus) shark, the sandbar (Carcharhinus plumbeus) shark, and the blacknose (Carcharhinus acronotus) shark.

My fellow Teacher at Sea, Barney Peterson, participated in Leg II of the 2016 survey, and by reading her blog I learned that the shark they caught the most was the sandbar shark.


In this sample data sheet from the end of Leg III, all but one of the sharks caught were the blacknose sharks.  Notice the condition of two of the fish caught: “heads only.”  Imagine what happened to them!



Personal Log

My first memory of a shark was when my brother, an avid lifetime fisherman, took several buses across the San Francisco Bay area to go fishing.  That afternoon, he came home on the bus with a huge shark he’d caught.  I was mesmerized. We were poor at the time and food was hard to come by, but mom or dad insisted sharks were not edible, and Greg was told to bury the shark in the yard.  Our dog, Pumpkin, would not comply, and dug that shark up for days after, the overpowering smell reminding us of our poor choice. I don’t have many regrets, but looking back on that day, I wish we had done something differently with the shark.

Since then, I’ve learned that shark is a popular source of protein in the diets of people around the world, and is growing in popularity in the United States.  In our survey area, Fisheries Biologist Eric Hoffmayer tells me that blacktip and sandbar sharks are the two most commercially important species. Our survey is a multispecies survey, with benefits beyond these two species and far beyond our imagination. As demand increases, so too does the need for careful management to keep fisheries sustainable. I am honored to be part of a crew working to ensure that we understand, value, and respect our one world ocean and the animals that inhabit it.

Barney Peterson: Rescue at Sea, August 23, 2016

NOAA Teacher at Sea
Barney Peterson

August 13 – 28, 2016


Mission: Shark/Red Snapper Longline Survey

Geographic Area of Cruise: Gulf of Mexico

Date: Tuesday, August 23, 2016

Weather Data from the Bridge:

Latitude: 28 10.999 N

Longitude:  084 09.706 W

Air temperature: 90.68 F

Pressure: 1020.05 Mb

Sea Surface Temperature: 32.6 C

Wind Speed: 4.74 Kt

Science Log:

Rescue At Sea!

About mid-morning today the ship’s electrician found me to tell me that the night shift crew had just reported seeing a Sea Turtle near the line that they were currently deploying.  The turtle swam over the line and then dove toward the baited hooks some 30 meters down near the bottom.  Nobody is supposed to catch Sea Turtles; the stress of being on the hook can be fatal so immediate recovery and release is required in the case of an accidental catch.  The crew went into immediate pro-active rescue mode!

Loggerhead Turtle

File photo of a Loggerhead Turtle.

The deployment was stopped. The line was cut and a final weight and a second hi-flyer were deployed to mark the end of the set for retrieval.  The Captain altered course to bring the ship back around to a point where we began retrieving the line.  Crew moved to the well deck and prepared the sling used to retrieve large sharks; it would be used to bring a turtle gently to the deck in the event that we had to remove a hook.

As retrieval started and gangions were pulled aboard, it became obvious that this set was in a great location for catching fish.  8 or 9 smallish Red Grouper were pulled in, one after another. Many of the other hooks were minus their bait.  The crew worked the lines with a sense of urgency much more intense than on a normal retrieval!  If a turtle was caught on a hook they wanted it released as quickly as possible to minimize the trauma.

As the final hi-flyer got closer and the last of the gangions was retrieved, a sense of relief was obvious among the crew and observers on the deck.  The turtle they spotted had gone on by without sampling the baited hooks.

On this ship there are routines to follow and plans in place for every emergency.  The rescue of an endangered animal is attended to with the same urgency and purpose as any other rescue.  The science and deck crews know those routines and slip into them seamlessly when necessary to ensure the best possible result.  This is all part of how they carry out NOAA’s mission of stewardship in our oceans.

Personal Log:

Here is Where I Live

I am assigned a bunk in a stateroom shared with another science crew member.  I am assigned to the top bunk and my roomie, Chrissie Stepongzi, is assigned to the bottom.  Climbing the ladder to the top bunk when the ship is rolling back and forth is like training to be an Olympic gymnast!  But, I seem to have mastered it!  Making my bed each morning takes determination and letting go of any desire for perfection: you just can’t get to “no wrinkles!”


Find the Monroe Eagle in my nest aboard the OREGON II

Chrissie works the midnight to noon shift and I work noon to midnight so the only time we really see each other is at shift change.  Together, we are responsible for keeping our space neat and clean and respecting each other’s privacy and sleep time.

I eat in the galley, an area open to all crew 24/7. Meals are served at 3 regular times each day.  The food is excellent!  If you are on shift, working and can’t break to eat at meal time, you can request that a plate be saved for you.  The other choice for those off-times is to eat a salad, sandwich, fruit or other snack items whenever you need an energy boost.  We are all responsible for cleaning up after ourselves in the galley.  Our Chief Steward Valerie McCaskill and her assistant, Chuck Godwin, work hard to keep us well-fed and happy.


Everyone on the ship shares space in the galley where seats are decorated with the symbol of the New Orleans Saints… somebody’s favorite team.

There is a lounge, open to everyone for reading, watching movies, or hanging out during down time.  There is a huge selection of up-to-date videos available to watch on a large screen and a computer for crew use.  Another place to hang out and talk or just chill, is the flying deck.  Up there you can see for miles across the water while you sit on the deck or in one of two Adirondack chairs.  Since the only shade available for relaxing is on this deck it can be pretty popular if there is a breeze blowing.


During off-duty times we can read, play cards or watch movies in the lounge.

Flying Bridge

The flying bridge is a place to relax and catch a cool breeze when there is a break in the work.

My work area consists of 4 stations: the dry lab which has computers for working with data, tracking ship movements between sample sites, and storing samples in a freezer for later study;

Dry Lab

The dry lab where data management and research are done between deployments

the wet lab which so far on this cruise, has been used mainly for getting ready to work on deck, but has equipment and storage space for processing and sampling our catch; the stern deck where we bait hooks and deploy the lines and buoys; the well deck at the front of the ship where lines and buoys are retrieved, catch is measured and released or set aside for processing, and the CTD is deployed/stored for water sampling.

We move between these areas in a rhythm dictated by the pace of our work.  In between deployments we catch up on research, discuss procedures, and I work on interviews and journal entries.  I am enjoying shipboard life.  We usually go to bed pretty tired, that just helps us to sleep well.  The amazing vistas of this ocean setting always help to restore my energy and recharge my enthusiasm for each new day.


Beautiful sunsets are the payoff for hot days on the deck.


Barney Peterson: Cut Bait and Fish! August 17, 2016

NOAA Teacher at Sea
Barney Peterson

August 13 – 28, 2016


Mission: Shark/Red Snapper Longline Survey

Geographic Area of Cruise: Gulf of Mexico

Date: Wednesday, August 17, 2016

Weather Data from the Bridge:

Latitude: 25 29.664 N

Longitude: 082 02.181 W

Air temperature: 84.56 F

Pressure: 1018.13 Mb

Sea Surface Temperature: 30.5 C

Wind Speed: 13.54 Kt    East 12.72 degrees

Science Log:

The fishing process on the ship repeats itself in a well-defined cycle: cut bait, bait 100 hooks, drop hi-flyer, drop weight,  attach 50 tags and baited hooks, drop weight, attach 50 more tags and hooks, drop weight, deploy hi-flyer.  Put the CTD over the side and retrieve for water quality data.  Wait an hour.  Retrieve hi-flyer, retrieve weight, pull in first 50 hooks and detach tags logging any catch as they come in, retrieve weight, pull in next 50 hooks and detach tags logging any catch as they come in, retrieve last weight, retrieve last hi-flyer.  Process the catch as it comes in, logging tag number, gender, species, lengths at 3 points, life stage, and tag number if the catch is a shark that gets tagged, return catch to water alive as quickly as possible. Transit to the next sample site.  Wash, rinse and repeat.

That boils it down to the routine, but long line fishing is much more interesting and exciting than that!  Bait we use is Atlantic Mackerel, caught farther north and frozen, thawed just before use and cut into 3 pieces per fish.  A circle hook is inserted through each piece twice to ensure it will not fall off the hook…this is a skill that takes a bit of practice.  Sometimes hooks are pulled in with bait still intact. Other times the bait is gone and we don’t know if it was eaten without the hook catching, a poor baiting job, or more likely eaten by smaller fish, too little to be hooked.  When we are successful we hear the call “FISH ON!” and the deck comes alive.

The line with a catch is pulled up as quickly and carefully as possible.  Some fish are not securely hooked and are lost between the water and the deck…not what we want to happen.  If the catch is a large shark (generally 4 feet or longer) it is raised to the deck in a sling attached to the forward crane to minimize the chance of physical injury.  For large sharks a camera with twin lasers is used to get a scaled picture for estimating length.  There is a dynamometer on the line between the sling and the crane which measures pressure and converts it to weight.  Both of these processes help minimize the time the shark needs to be out of water with the goal of keeping them alive to swim away after release.  A tag is quickly attached to the shark, inserted under the skin at the base of the second dorsal fin.  A small clip is taken from a fin, preferably from the pelvic fin, for DNA studies. The sling is lowered back to the water and the shark is free to swim away.  All data collected is recorded to the hook-tag number which will identify the shark as to geographic location of the catch.

Shark in sling

A sandbar shark being held in the sling for measurements.

Sometimes the catch is a smaller shark or a bony fish:  a Grouper, a Red Snapper, or any one of many different types of fish that live in this area.  Each of these is brought onto the deck and laid on a measuring board. Species, length, and weight are recorded. Fin clips are taken.  Many of them are on the list of species of recreational and commercial importance.  These fish are retained for life history studies which will inform future management decisions.  In the lab they are dissected to retrieve otoliths (ear stones) by which their age is determined.  Depending upon the species, gonads (the reproductive organs) may be saved for study to determine the possibilities of future reproductive success.  For certain species a good-sized piece of flesh is cut from the side for fraudulent species voucher library use.

After the smaller sharks are measured, fin clipped, gender identified, life stage is determined and weight is taken, they are tagged and returned to the water as quickly as possible.  Tags on these sharks are a small, numbered plastic tag attached by a hole through the first dorsal fin.

This is a lot to get done and recorded and it all happens several times each shift.  The routine never varies.  The amount of action depends upon the success of the catch from any particular set.  This goes on 24 hours per day.  The only breaks come as we travel between the sites randomly selected for our sets and that time is generally spent in the lab.

(Thanks go to Kevin Rademacher, Trey Driggers and Lisa Jones, Research Fisheries Biologists, for contributing to this entry.  File photo NOAA/NMFS)

Personal Log:

I do not need 12 hours of sleep.  That means I have several hours at the start or end of each shift to write in my journal, talk to the other members of the crew, take care of personal business such as laundry and communicate with home via email.  Even so, every day seems to go by very quickly and I go to bed thinking of all the things I have yet to learn.  In my next posts I will tell more about the different kinds of sharks and introduce you to some of the other people on the ship.  Stay tuned.

Denise Harrington, Getting Ready for an Adventure, April 23, 2016

NOAA Teacher at Sea
Denise Harrington
(Almost) aboard NOAA Ship Pisces
May 04, 2016 – May 17, 2016

Greetings from Garibaldi, Oregon. My name is Denise Harrington and I teach Second Grade at South Prairie Elementary School in Tillamook, Oregon, along the north Oregon coast. There are 300 amazing second and third graders at our school who can prove to you that no matter how young you are, you can be a great scientist.  Last year they were caught on camera by Oregon Field Guide studying the diversity of life present in our ocean.


I applied to become a NOAA Teacher at Sea because I wanted to work with scientists in the field. I seem to learn best by doing.  In 2014, I joined the crew of NOAA ship Rainier, mapping the ocean floor near Kodiak Island, Alaska.  I learned how vast, connected, and undiscovered our oceans are. Students watched in disbelief after we discovered a sea floor canyon.  I learned about the technology and skills used to map the ocean floor. I learned how NOAA helps us stay safe by making accurate nautical charts.  It was, for our students and myself, a life changing experience.

As an avid sea kayaker, I was able to share my deeper understanding of the ocean with fellow paddlers. Photo courtesy of Bill Vonnegut

Now, I am fortunate enough to participate in another NOAA survey. On this survey aboard NOAA ship Pisces, scientists will be collecting data about how many fish inhabit the area along banks and ledges of the Continental Shelf of the Gulf of Mexico.
NOAA believes in the value of sharing what they do with the public, and students in particular. The crew of Pisces even let fifth grader students from Southaven, Mississippi name the ship after they won a writing contest. Maybe you can name the next NOAA ship!

On May 3, 2016, Ship Pisces will begin Leg 3 of their survey of reef fish. I have so many questions.  I asked Chief Scientist Kevin Rademacher why the many survey partners chose snapper and grouper to survey. He replied “Snapper and grouper are some of the most important commercial fisheries here in the Gulf of Mexico. There are 14 species of snapper in the Gulf of Mexico that are good to eat. Of those the most commercially important is the red snapper. It is also currently over-fished.”   When I hear “over-fished” I wonder if our second graders will have many or any red snapper to eat when they they grow up. Yikes!

Another important commercial catch is grouper.  My brother, Greg, who fishes along the Kenai River in Alaska understands why grouper is a focus of the survey. “It’s tasty,” he says. I can’t believe he finds grouper tastier than salmon.  NOAA is making sure that we know what fish we have and make sure we save some for later, so that everyone can decide which fish is the tastiest when they grow up.

I have so many questions keeping me up at night as I prepare for my adventure. What do I need to know about fish to do my job on the ship?  Will I see evidence of the largest oil spill in U.S. history, the Deepwater Horizon spill? How crowded will we all be aboard Ship Pisces? If I dissect fish, will it be gross? Will it stink?  Will I get sea sick? With my head spinning with questions, I know I am learning. Yet there is nothing more I can do now to prepare myself for all that I will learn, except to be early to the airport in Portland, Oregon, and to the ship in Pascagoula, Mississippi, on May 3rd.

I will get home in time to watch my daughter, Elizabeth, graduate from high school.  Ever since I returned from the NOAA cruise in Alaska, she has been studying marine biology and even competed in the National Ocean Sciences Bowl.

liz with a crab


During research in the Gulf of Mexico with the crew of Ship Pisces, I will learn about the many living things in the Gulf of Mexico and about the technology they use to protect and manage commercial fisheries.  Soon, you will be able to watch me collect data about our ocean critters. Hope for fair winds and following seas as I join the crew on Ship Pisces, “working to protect, restore, and manage the use of our living ocean resources.”

Jeff Miller: Sharks and Dead Zones, September 12, 2015

NOAA Teacher at Sea
Jeff Miller
Aboard NOAA Ship Oregon II
August 31 – September 14, 2015

Mission: Shark Longline Survey
Geographical Area: Gulf of Mexico
Date: September 12, 2015

Data from the Bridge
Ship Speed:  9.2 knots
Wind Speed:  8.8 knots
Air Temp: 27,7°C
Sea Temp: 30.2°C
Seas: 1-2 meters
Sea Depth:  457 meters

GPS Coordinates
Lat:  27 47.142 N
Long:  094 04.264 W

Science and Technology Log
On September 8 – 9, we surveyed a number of stations along the Texas and Louisiana coasts that were in shallow water between 10-30 meters (approximately 30-100 feet).  Interestingly, the number of sharks we caught at each station varied dramatically.  For example, we pulled up 65 sharks at station 136 and 53 sharks at station 137, whereas we caught only 5 sharks at station 138 and 2 sharks at station 139.  What could account for this large variance in the number of sharks caught at these locations?

Weighing a bonnethead shark

Weighing a bonnethead shark caught off the coast of Texas.

One key factor that is likely influencing shark distribution is the amount of dissolved oxygen in the water.  Oxygen is required by living organisms to produce the energy needed to fuel all their activities.  In water, dissolved oxygen levels above 5 mg/liter are needed for most marine organisms to thrive. Water with less than 2 mg/liter of dissolved oxygen is termed hypoxic, meaning dissolved oxygen is below levels needed by most organisms to thrive and survive.  Water with less than 0.2 mg/liter of dissolved oxygen is termed anoxic (no oxygen) and results in  “dead zones” where little, if any, marine life can survive.

As part of several missions, including the ground fish and longline shark surveys, NOAA ships sample the levels of dissolved oxygen at survey stations in coastal waters of the Gulf of Mexico.  Measurements of dissolved oxygen, salinity, and temperature are collected by a device called the CTD.   At each survey station, the CTD is deployed and it collects real-time measurements as it descends to the bottom and returns to the surface.


Standing with the CTD, which is used to measure dissolved oxygen, salinity, and temperature.

Data collected by the CTD is used to produce maps showing the relative levels of dissolved oxygen in coastal regions of the Gulf of Mexico.    For more environmental data go to the NOAA National Centers for Environmental Information.

2015 Gulf Hypoxia Map

Map showing dissolved oxygen levels in the coastal areas of the Gulf of Mexico. Red marks anoxic/hypoxic areas with low dissolved oxygen levels.  Source: NOAA National Centers for Environmental Information.

Environmental surveys demonstrate that large anoxic/hypoxic zones often exist along the Louisiana/Texas continental shelf.  Because low dissolved oxygen levels are harmful to marine organisms, the anoxic/hypoxic zones in the northern Gulf of Mexico could greatly impact commercially and ecologically important marine species.  Overwhelming scientific evidence indicates that excess organic matter, especially nitrogen, from the Mississippi River drainage basin drives the development of anoxic/hypoxic waters.  Although natural sources contribute to the runoff, inputs from agricultural runoff, the burning of fossil fuels, and waste water treatment discharges have increased inputs to many times natural levels.

Runoff in the Mississippi basin

Map showing sources of nitrogen runoff in the Mississippi River drainage basin. Source NOAA National Centers for Coastal Ocean Science.

Nitrogen runoff from the Mississippi River feeds large phytoplankton algae blooms at the surface.  Over time, excess algae and other organic materials sink to the bottom.  On the bottom, decomposition of this organic material by bacteria and other organisms consumes oxygen and leads to formation of anoxic/hypoxic zones.  These anoxic/hypoxic zones persist because waters of the northern Gulf of Mexico become stratified, which means the water is separated into horizontal layers with cold and/or saltier water at the bottom and warmer and/or fresher water at the surface. This layering separates bottom waters from the atmosphere and prevents re-supply of oxygen from the surface.

Since levels of dissolved oxygen can  greatly influence the distribution of marine life, we reasoned that the high variation in the number of sharks caught along the Louisiana/Texas coast could be the result of differences in dissolved oxygen.  To test this idea, we analyzed environmental data and shark numbers at survey stations along the Louisiana/Texas coast.  The graphs below show raw data collected by the CTD at stations 137 and 138.

CTD 137

Dissolved oxygen levels at station 137 (green line; raw data). At the surface: dissolved oxygen = 5.0 mg/liter. At the bottom: dissolved oxygen = 1.5 mg/liter.  Notice the stratification of the water at a depth of 7-8 meters.


CTD 138

Dissolved oxygen levels at station 138 (green line; raw data).  At the surface: dissolved oxygen = 5.5 mg/liter. At the bottom: dissolved oxygen = 0 mg/liter.  Notice the stratification of the water at a depth of 7-8 meters.

Putting together shark survey numbers with environmental data from the CTD we found that we caught very high numbers of sharks in hypoxic water and we caught very few sharks in anoxic water.  Similar results were observed at station 136 (hypoxic waters; 65 sharks caught) and station 139 (anoxic waters; 2 sharks caught).

Data table

Relationship between dissolved oxygen levels and numbers of sharks caught at stations 137 and 138.

What can explain this data?  One possible answer is that sharks will be found where there is food for them to eat.  Thus, many sharks may be moving in and out of hypoxic waters to catch prey that may be stressed or less active due to low oxygen levels.  In other words, sharks may be taking advantage of low oxygen conditions that make fish easier to catch.  In contrast, anoxic waters cannot support marine life so there will be very little food for sharks to eat and, therefore, few sharks will be present.  While this idea provides an explanation for our observations, more research, like the work being done aboard the NOAA Ship Oregon II, is needed to understand the distribution and movement of sharks in the Gulf of Mexico.

Personal Log
My time aboard the Oregon II is drawing to a close as we move into the last weekend of the cruise.  We have now turned away from the Louisiana coast into deeper waters as we travel west to Galveston, Texas.  The weather has changed as well.  It has been sunny and hot for much of our trip, but clouds, rain, and wind have moved in.  Despite this change in weather, we continue to set longlines at survey stations along our route to Galveston.  The rain makes our job more challenging but our catch has been relatively light since we moved away from the coast into deeper waters.  Hopefully our fishing luck will change as we move closer to Galveston.  I would like to wrestle a few more sharks before my time on the Oregon II comes to an end.