Rebecca Loy, Land, Sea and Flexibility! September 9, 2015

NOAA Teacher at Sea
Rebecca Loy
Aboard NOAA Ship Rainier
September 8 – 24 , 2015

Mission: Hydrographic Survey
Geographical area of Research: Kodiak Island, Alaska
Date: September 9, 2015

Current Location: Women’s Harbor, U.S. Coast Guard Base, Kodiak, Alaska

Science Log

Kodiak, Alaska is amazing and NOAA Ship Rainier is even more so.  When I arrived I learned that we were going to be in port for a few days.  Instead of leaving on Tuesday, September 08, 2015 we are scheduled to leave on Saturday.  Early in my planning and training I learned that FLEXIBILITY is very important and it has proven to be true.

NOAA TAS 2015 005

Rainier with the rising sun behind it at Women’s Bay

During this time at port, the entire crew is very busy with ship activities.  I thought this would be the perfect time to give some background on this amazing ship!  Here is a link to more detailed information Rainier information flyer.  An even more detailed, “let the geek out” link is   Rainier special details.

Rainier is named after Mount Rainier in Washington State and was put to work in 1968.  Do the math, how old is Rainier this year?  Rainier is a long 231 foot ship.  The breadth (width) is 42 feet and the draft, or how far down it sits in the water is 14 feet.  One of the most interesting facts about this vessel is the ice strengthened hull.  Rainier is one tough ship!!

To keep this unique ship running so well it has an incredible crew.  I have learned that there are 7 main areas of work.  I am only going to give a general overview so everyone can understand a little bit more about what happens here.  I will go into more detail with future blogs.

Wardroom – This is what the NOAA uniformed officers are called.  They can be seen wearing their blue uniforms.  The hydrographic officers have a more interesting job than the officers on other NOAA vessels because they act not only as officers getting the ship where it needs to go safely, but they also work right alongside the survey scientists making tidal observations and coastal maps.

The Rainier Officers working in the Plotting Room

Rainier Officers working in the Plotting Room

It makes a lot of sense for the people who are researching and creating the very important coastal maps to understand them.  There is no one better than the men and women who work with them every day!

Survey – These are the scientists who work with the officers to collect the data.  Collecting the data is just the beginning.  Once the data is collected they begin analyzing data and putting it to work.  Similar to students who have classwork, they get assignments that need to be met and deadlines to get the work done.  It can take weeks and months for the data to be put together to make the charts.

Engineering – The engineers are the inner working of the ship.  They are the men and women who keep Rainier going strong!  While here, there is a constant hum of mechanical parts (later the engines will be going and we will hear and feel those).

Just one of many areas the engineers work. This is an organized machine shop for repairs/fabricating.

Just one of many areas the engineers work. This is an organized machine shop for repairs/fabricating.

Everywhere you look inside the ship you can see something that the engineers are responsible for maintaining.  On my tour, I was amazed from top to bottom of the fans, gears, plumbing, wires, generators, motors, hydraulics, engines, heating/cooling, launch maintenance, refrigeration, distillers for water plus so much more that needs to be kept going.  As you can see, this is also a very busy department!

Deck – While the engineers maintain the inside of the ship, the deck crew maintains the outside or what is called the “weather deck”.   Here you will see the massive crane on the back of the ship and two smaller cranes at the front.

The large crane at the stern (back) of the ship.

The large crane at the stern (back) of the ship.

They work the two large anchors and the “windlass” or winch to pull them up along with the smaller launches (boats) that are attached to the ship and the davits (hoists) to put them in and out of the water.  The deck crew also make sure the ship is moored (tied up) properly plus so much more.

EET and ET – These are the two smallest departments, but they are needed to keep everyone working.  The EET is the electronics engineering technician.  He is an electrician that takes care of all the wiring throughout the ship.  The Rainier EET has been here for over 20 years.  The ET is the electronics technician and he builds, maintains and programs the computers and servers that are needed to run Rainier.

Steward – Have you heard the term “laughter is the best medicine?”  Here on Rainier the food is the best medicine and what keeps this crew connected and happy!

The incredibly clean and efficient galley on the Rainier

The incredibly clean and efficient galley on Rainier

The galley (kitchen) is incredibly clean, organized and delicious!  The selection of food has been healthy, varied and with just the right amount of sweet treats.  They are up very early and work later to keep this crew fed.  Every department has to come through here so they are the true backbone of the ship!

As I get to know the ship and crew more, I am continually amazed at the people here, how they communicate and work together and it all runs so smoothly.  I am looking forward to our upcoming adventures doing research around Kodiak Island.

Personal Log

Being chosen for this experience is a great honor for me.  I was here for only 24 hours and I had already seen so much of this beautiful area.  I was fortunate enough to get here the night before Labor Day so the crew and I had the day off.

One of the harbors in Kodiak, AK

One of the harbors in Kodiak, AK

I walked around the harbor town of Kodiak and then went hiking to Abercrombie State Park.  This now incredibly beautiful area of moss draped trees, cliffs and black rock/sand beaches was once a World War II gun site.  I saw the massive guns, the lookout that was half buried in the rock and the searchlight shelter.  Due to the northern site, there are times that the sun is not out for long so they had big searchlights that were rolled out of the structure to search for planes and ships out in the Pacific Ocean.  While there I got to see the resident Bald Eagles and other wildlife (no Kodiak bears yet but I keep looking).

Later, I was able to head to the southern shore of Kodiak Island to see where people surf on Surfer Beach.  Again, the sand is very dark and the waves were incredible.  I didn’t think Alaska was an area for surfing, but it is very popular.

The incredible Surfer Beach!

The incredible Surfer Beach!

After looking at Surfer Beach I was taken over to the Pacific Spaceport Complex Alaska.  I was able to let my Space Geek out.  Too bad I didn’t have my Blue Flight Suit, I could have had my picture taken there.  This is an active launch pad for launches over the Arctic.  They had an explosion here in November, 2014 (no one was hurt thankfully) so it is being repaired before more launches can take place.

An interesting sign at the Pacific Spaceport Alaska.

An interesting sign at the Pacific Spaceport Alaska.

On the ship, the crew is incredibly welcoming and helpful.  I am gradually learning my way around and how things work.  Off the ship, I used the time to connect with the local Kodiak High School and their award winning robotics team.  They are doing some pretty amazing things here with STEAM in this small coastal town.

More adventures to follow as we head out and I become a true Teacher At Sea, not just a Teacher In Port!

Kathleen Gibson, Preparing to Leave for the Mississippi Coast, July 10, 2015

NOAA Teacher at Sea
Kathleen Gibson
Aboard NOAA Ship Oregon II
July 25 – August 8, 2015

Mission: Fisheries – Conduct longline surveys to monitor interannual variability of shark populations of the Atlantic coast and the Gulf of Mexico.
Geographical Area of Cruise: Gulf of Mexico and Atlantic Ocean off the Florida coast.
Date: July 10, 2015


Town of Trumbull, Fairfield County , CT

Town of Trumbull, CT

My name is Kathleen Gibson and I bring you greetings from Trumbull, CT where live and teach. In two weeks I will travel to Pascagoula, MS, located on the Gulf of Mexico, to join NOAA Corps members, research scientists, and the crew aboard NOAA Ship Oregon II, as a  2015 NOAA Teacher at Sea.

I work at Trumbull High School and currently teach Biology to sophomores and two elective courses for seniors–Marine Science and AP Environmental Science.  I’m passionate about environmental education and am always looking for opportunities to engage students in the world outside of the classroom.  Trumbull has a large amount of protected green space, wetlands, streams and a river, and while we aren’t on the coast, we are only a few miles from Long Island Sound.  The woods and the shoreline have become our laboratory.

Pequonnock River, Trumbull, CT

Pequonnock River, Trumbull, CT

I’m open to adventures and new experiences that help me grow both personally and professionally.  I’m fortunate to have an awesome family, terrific colleagues and open-minded students who are willing to go along with my ideas; whether it be be hiking around volcanoes and rift zones, looking for puffins, or wading in nearby streams looking for life below.

About NOAA and Teacher at Sea

NOAA Ship Oregon II Photo Credit:

NOAA Ship Oregon II
Photo Credit:

The National Oceanic and Atmospheric Administration (NOAA) is an agency within the United States Department of Commerce that seeks to enrich life through science.  While NOAA is somewhat familiar to many of us– thanks to the abundance of weather data that is collected and disseminated to the public–that’s not all that is happening  there. NOAA is working to increase our understanding of climate, weather and marine ecosystems, and to use this knowledge to better manage and protect these crucial ecosystems.  In addition to the abundant educational resources available to all teachers, NOAA provides unique opportunities for teachers and students.  The Teacher at Sea Program  brings classroom teachers into the field to work with world-renowned NOAA scientists.

The Mission

The Mission of the cruise I will be a part of is to monitor Shark and Red Snapper populations in the Gulf of Mexico in the Atlantic Ocean off the Florida coast. Data collected will be compared to findings from previous years, as a part of the ongoing research studying inter-annual variability of these populations. We are scheduled to embark on July 25, 2015 and plan to sail from Pascagoula, MS, down the west coast of Florida and up the Atlantic Coast as far as Mayport, FL.

I am honored to have been selected to be a Teacher at Sea for the 2015 Season  and look forward to a number of “firsts”. I’ve never been to Mississippi nor have I been at sea for more than 24 hours. Also, I’ve only experienced sharks as preserved specimens or through aquarium glass.  I’m also looking forward to meeting my shipmates and learning about career opportunities and the paths that led them to be a part of this Oregon II cruise. I’ll share as much as I can through future posts. I’m excited to bring my students and others along with me on this journey.

Trumbull to Pascagoula.  Longline survey area is marked in blue.

Trumbull to Pascagoula. Longline survey area is marked in blue.

Next Up?

My next post to you should be coming later this month from off the Mississippi coast.  However, the first rule of being on board is FLEXIBILITY, so things may change.  Either way, I’ll keep you posted. In the meantime, please check out some of the TAS 2015 blogs written by my fellow NOAA Teachers at Sea, and spread the word. There is so much to learn.

Did You Know?

  • While some sharks release eggs into the water where they will later hatch, as many as 75% of shark species give birth to live young.
  • Shark babies are called pups.

Bill Henske, Sharks and Minnows, June 25, 2015

NOAA Teacher at Sea
Bill Henske
Aboard NOAA Ship Nancy Foster
June 14 – 29, 2015

Mission: Spawning Aggregation Survey
Geographical Area: Florida Keys and Dry Tortugas

Date: Wednesday, June 24, 2015

Weather Data from the Bridge: East to southwest winds 15-20 kts. Decreasing to 10 to 15 kts.  Seas 3 to 5 ft. Isolated showers and thunderstorms.

Science and Technology Log

Integrated Tracking of Aquatic Animals of the Gulf Coast

One of the best games you can play in the pool is Sharks and Minnows. The premise of this game is that you and your school are small fish that have to travel from one side of the pool to the other without getting caught by the shark. If you are caught you get turned into a shark for the next round.  Eventually the sharks are well distributed, preventing any minnows from getting through.

Acoustic Monitoring Arrays in the Florida Keys National Marine Sanctuary

Acoustic Monitoring Arrays in the Florida Keys National Marine Sanctuary

I am reminded of this as the fin fish team from FWC sets up a grand game of sharks and minnows for fisheries science.  Over the past week we have been setting up several arrays of acoustic receivers that catch tagged fishes’ signals as they swim through the Florida Keys reef system.  The plan is designed to capture fish moving within and between different parts of the ecosystem.  Any tagged fish coming into Florida Keys National Marine Sanctuary should come into contact with one of the receivers, as will any fish traveling out.  The placement of the receivers on the west and east of the sanctuary create and “entrance” and “exit” for tagged fish.

Within the sanctuary there are now several concentrated grids of receivers in places that make for good fish habitat (aka good fishing spots).  The VR2 receivers can record the identification number of the tagged fish as well as the time and date they connected to the receiver and their distance from the receiver.  When the receivers are collected, that data can be downloaded and a picture of fish movement created.  The data from the FWC’s arrays and tagged fish will be incorporated into a more extensive project called ITAG (Integrated Tracking of Aquatic Animals of the Gulf Coast).   In this project, collaborators share their acoustic tag data and receiver logs with each other, extending the reach of all project.   In the vastness of our marine environments, any one project will produce only a small snapshot of what is happening.  By collaborating between projects, the complexity of fisheries and ecosystems might be more easily untangled.

Sonar profile of one of our sites for an acoustic release receiver.

Sonar profile of one of our sites for an acoustic release receiver.

Today we set up individual stations of a new device which uses an acoustic release.  These are for much deeper sites containing “humps” which are relief features rising 100 to 200  feet about the surrounding sea floor.  Because of the relief, humps offer a large variety of habitats in a small amount of space, creating a highly diverse area for aquatic life.  Since these deeper areas are inaccessible to most divers, the receivers we set out can be triggered to return to the surface.  When data is ready to be collected in a few months, a device will be lowered into the water that communicates with the receiver using sound.  This device, called a VR100, can trigger the receivers to jettison themselves to the surface with the help of two small floats.  At that time the receivers can be collected from a small boat.

Joel from FWC checks the connection to an acoustic receiver that has just been dropped to the sea floor.

Joel from FWC checks the connection to an acoustic receiver that has just been dropped to the sea floor.

This video below shows our deployment of the acoustic release receiver from the side of the Nancy Foster.


Personal Log

City in the Sea

The Nancy Foster has been at sea since February of this year.  While it resupplies every few weeks, most of the vital functions for human habitation are performed on board.  The ship is, for its officers, crew, and science passengers, a small floating city.

View of the engine room control panels.

View of the engine room control panels.

Electricity requirements for a large ship are quite high.  If you factor in air conditioning, navigation systems, lighting, motors and pumps, kitchen, and scientific tools, the energy consumption equals a small hamlet.  Amazingly, this electricity is all created on board with the ship’s generator and a copious amount of marine diesel.

The Nancy Foster has a main engine for thrust but several others that act as generators for the thrusters, electricity, and backup power.

The Nancy Foster has a main engine and several others that act as generators for the thrusters, electricity, and backup power.

Food is loaded on at ports but that doesn’t mean it isn’t fresh and delicious.  Each day Bob and Lito prepare breakfast, lunch, and dinner for all of the scientists and crew.  These delicious multi-course meals keep all the members of this floating city very happy.  Just like the hungry generators, the humans energy levels are kept well stocked.

Water, water everywhere but not a drop to drink, except on the Nancy Foster you can just distill it using excess engine heat.

Water, water everywhere but not a drop to drink, except on the Nancy Foster you can just distill it using excess engine heat.

There is no sewage processing on board the ship.  Ship waste is carried in large tanks until it can be released into open ocean, far from land.  Once in the ocean, its nutrients are quickly consumed by hungry phytoplankton and converted into energy for the next level of the food chain.  Food waste is also separated from recycling and “garbage”.  Food waste, after being ground, is composted at sea.

With 40 people on board eating, showering, and using the head, the ship needs to produce water on a continual basis.  The ship keeps a reserve supply and when it goes down, The Nancy Foster has a device that uses excess heat from the engines and generators to distill water from the ocean.

Every day the Science Chief and project leaders determine a schedule and make staff assignments.

Every day the Science Chief and project leaders determine a schedule and make staff assignments.

Cities need organization and a specialized workforce to get all of these things done.  The NOAA Corps Officers make sure the ship stays on course and its mission objectives are met.  The ships crew ensures the small craft are launched safely, everyone is fed, and the ship keeps humming and running smoothly.  The science staff are visitors, enjoying all of the amenities of the ship while using its resources to complete their scientific missions.  Many of the science staff cruise with the Nancy Foster every year, while for some, it is their first time.

How did you get here?

I asked several of the scientists on board what they wanted to do when they were in middle school and how they became involved in marine science and research.  My middle school students are just starting to think about who they are and who they want to be.  I wanted to get some background information on how some of the scientists here got their start.

J. – A biologist had no clue what he wanted to do when he was in middle school and this trend continued until college! He loved fish and applied for an entry level fisheries job and has been at it ever since.

R. – Thinks she wanted to be a writer in middle school based on a paper she read from back then.  After pursuing her interest in ecology she is now writing about conservation issues for NOAA.

S. – She always loved science and math – After studying geology she had a chance to go to sea.  Loved it more than her geology work and now scans the sea floor of the Gulf of Mexico.  She won’t tell you where the treasure is!

P. – He took a test when he was in middle school that said he was not particularly interested in anything.  What he always liked was fish. After a couple related jobs he has worked in fisheries for many years.

S. – When he was in middle school he wanted to be rich and work in biology.  He now works in biology!

One of the major commonalities among the scientists is that they followed, or in some cases, rediscovered their interest.  As a teacher, I hope I can help my students find what they are passionate about.

By the numbers:

226 scuba dives
5 ROV dives
5 Reef Visual Census (RVC) surveys
20 Drop camera ‘dives’
40 New stands and receivers deployed
4 sea turtles
61 square miles of seafloor mapped
1 Teacher at Sea Hat not lost

Sandra Camp: Aloha from San Francisco! June 5, 2015

NOAA Teacher at Sea
Sandra Camp
Soon to be aboard NOAA Ship Hi’ialakai
June 14 – 24, 2015

Mission: Main Hawaiian Islands Reef Fish Survey
Geographical area of cruise: Hawaiian Islands, North Pacific Ocean
Date: Friday, June 5, 2015

Personal Log

ocean and bay

The Golden Gate Bridge between the Pacific Ocean and San Francisco Bay

My name is Sandra Camp, and I teach math and science to 5th graders at Robert Louis Stevenson Elementary School in the Sunset neighborhood of San Francisco in northern California. San Francisco is located on a peninsula, which means it is surrounded by water on three sides. On the eastern part of the city lies San Francisco Bay. The western side is bordered by the Pacific Ocean. The famous Golden Gate Bridge spans the divide between these two large and important bodies of water.


tide pools

Me exploring tide pools


The Pacific is sometimes called the “Mother of all Oceans” because it is the largest ocean on our planet. Although we have many beautiful beaches here, in San Francisco the Pacific Ocean is much too cold for humans to swim in. Even though I can’t swim in it, I do love to go tide pooling along the Pacific Ocean, looking for tiny sea creatures when the tide goes out like sea stars, crabs, and anemones.


sea star

Sea star in tide pool


elephant seals

Elephant Seals

kelp forest

Kelp Forest – photo courtesy of NOAA

Being surrounded by so much water makes us care a great deal about the health of the world’s oceans and the plants and animals that live there. In our part of the Pacific Ocean, there are giant kelp forests. We are also home to many different kinds of marine animals, such as sea otters, harbor seals, elephant seals, crabs, sea lions, bat rays, and sharks. When there are healthy populations of these creatures living off the coast of northern California, it indicates that our part of the Pacific Ocean is healthy.

I am very excited, because in about a week I will be visiting a different part of the Pacific Ocean, a part where the ocean is warm enough to swim in! Hawaii is a chain of islands located in the northern Pacific Ocean.  Unlike San Francisco, islands are surrounded on all sides by water, and because the ocean water there is warmer, it allows coral reefs to grow.  I will be flying to Honolulu, Hawaii where I will board the NOAA (National Oceanic and Atmospheric Administration) Ship Hi’ialakai at its home port in Pearl Harbor. Do any of you know what Pearl Harbor is famous for?  If so, write your answer to me in the comments section of this blog.  As a Teacher at Sea, I will spend 10 days aboard the ship while scientists conduct reef fish surveys around the main Hawaiian Islands. This means that they will be studying the fish that normally live in the coral reefs around the islands. If there are healthy populations of these fish in the reefs, then that means the coral reefs are healthy. If not, then that indicates the reefs are having problems. Here is a picture of the Hi’ialakai. Its name means “embracing pathways to the sea” in Hawaiian.


The Hi’ialakai – photo courtesy of NOAA

It takes a lot of people to run a ship this big.  Stay tuned, because in addition to the scientists, I will introduce some of the people who work aboard the ship to you in my upcoming blogs.

Science and Technology Log

coral polyps

Coral Polyps – photo courtesy of NOAA

What exactly is a coral reef, anyway? Coral reefs are ecosystems located in warm, shallow ocean water that are home to a very diverse amount of sea creatures, including fish, crabs, turtles, octopus, sharks, eels, and shrimp. Reefs are structures that are made from the skeletons of colonies of tiny animals called coral. The individual animals that make up the colonies are called polyps.  Polyps usually have a cylindrical-shaped body with a mouth surrounded by tentacles at one end.  The polyps use these tentacles to catch tiny animals that drift by called zooplankton, which they eat for food.


coral reef

Coral Reef – photo courtesy of NOAA


The coral polyps have a symbiotic relationship with algae. The algae help corals build their skeletons, and the corals provide the algae with protection and compounds they need for photosynthesis. Coral reefs are the largest structures built by animals on Earth! Sadly, coral reefs around the world are in danger because of human factors like pollution, over-fishing, and global warming.



Scientist Diving – photo courtesy of NOAA

Most of the scientific work aboard the Hi’ialakai will be conducted by scientists who are scuba diving. While they are under the water, scientists can take pictures of the ocean floor and the coral reefs, as well as count the number of reef fish they find. The information they gather will help them determine if the reefs around Hawaii are healthy places for animals to live. I will be sharing a lot more about the work they do with you in the blogs I write while I am aboard the Hi’ialakai.


Did You Know?

The Great Barrier Reef off the coast of Australia is over 1400 miles long! Even though coral reefs are the largest structures built by animals and are home to so many diverse species, they cover less than one percent of the ocean floor.

Important Words

peninsula – a body of land surrounded on three sides by water

symbiotic – a relationship between two different species that benefits them both

polyp – the individual body of a coral animal, which is shaped like a cylinder, and has a mouth surrounded by tentacles at one end

zooplankton – tiny aquatic animals

Trevor Hance: Permission to Come Aboard? May 28, 2015

NOAA Teacher at Sea
Trevor Hance
Soon to be Aboard R/V Hugh R. Sharp
June 12 – 24, 2015

Mission: Sea Scallop Survey
Geographical area: New England/Georges Bank
Date: May 28, 2015

Personal Log: Permission to Come Aboard?

Greetings from Austin, Texas.  In less than two weeks, my grand summer adventure begins.  I will be flying out of Austin, and heading to Boston where Peter Pan will magically transport me down the Woods (Rabbit?) Hole and out to sea aboard the R/V Hugh R. Sharp, where I will support scientists conducting a Sea Scallop Survey.


Photo from the NOAA Fisheries website that I’ve been using to determine how to dress!

My Real Job

I teach at a fantastic public school in Austin that incorporates student interest surveys in lesson design and enrichment opportunities across subjects.  Although we are within the city of Austin, our campus backs up to a wildlife preserve (30,000 acres, total) that was set aside as land use patterns changed, and threatened habitat and ecosystems of 2 endangered birds, 8 invertebrates and 27 other species deemed “at risk.”  We have about 5 “wildspace” acres on our actual campus property that is unfenced to the larger Balcones Canyonlands Preserve.  We use that space as our own laboratory, and over the last decade, fifth grade students at our school have designed, constructed and continue to support the ecosystem through ponds supported by rainwater collection (yes, they are quite full at the moment!), a butterfly habitat, water-harvesting shelter/outdoor classroom, grassland/wildflower prairie and a series of trails.  In the spring, I post job descriptions for projects that need work in our Preserve and students formally apply for a job (i.e. – resume/cover letter).  They spend the balance of the spring working outdoors, conducting research relating to their job, and doing their part to develop a culture and heritage of sustainability on our campus that transcends time as students move beyond our campus during their educational journey.  My path through the curriculum is rooted in constructivist learning theory (project-based, place-based and service learning) and students are always outdoors.  Parents, of course, always get a huge “thank you” at the end of the year from me for not complaining that I’ve ruined too many pairs of shoes.

Below are a few pictures from our game cameras and shots I’ve taken of my classes in action this spring.


Texas bluebonnets are beautiful, and even more spectacular when you get close and see “the neighborhood.”


Rain or shine


Early morning observation in the Preserve


Gambusia — my favorite!


Western ribbon snake snacking at the tadpole buffet.


One of our frog surveys in action


So, did anyone figure out what does the fox say?


Wild pigs rooting


Bandits abound when the sun goes down.


2015 05 13 GCW top of observation area

The endangered golden cheeked warbler, taken by me early May

As I write, there are about 5 days left of this school year, which means that most of our big projects are complete and the rain has paused, so we’re spending a few days having a big “mechanical energy ball” competition (aka – “kickball”), and I get the distinct feeling that the students are quite prepared for their summer break!

My Background

I was an “oilfield kid” and grew up in Lafayette, Louisiana, the heart of Cajun Country, and about an hour’s drive to the Gulf of Mexico.  In college, I worked in the oilfield a bit, and after finishing law school, I was a maritime attorney, so I was able to spend some time aboard vessels for various purposes.  My time aboard the Hugh R. Sharp will be my longest stint aboard a vessel, and I’m quite excited for the work!

My Mission

R/V Hugh R. Sharp (btw students, it is a vessel or ship, not a “boat”) is a 146-foot general purpose research vessel owned by the University of Delaware (go Fighting Blue Hens!).  Each summer I get a travel coffee mug from the college where I attend a professional development course, and I’m hopeful I can find one with a picture of YoUDee on it this year!


Photo from the Woods Hole Center for Oceans and Human Health



Photo from the University of Delaware bookstore website of the mug I might pick up while traveling this summer



R/V Hugh R. Sharp


While aboard the vessel, we will be conducting surveys to determine the distribution and abundance of scallops.  My cruise is the third (and northernmost) leg of the surveys, and we’ll spend our time dredge surveying, doing an image based survey using a tethered tow-behind observation vehicle, and some deeper water imaging of lobster habitat.  Those of you who know me, know that I am genuinely and completely excited and grateful for the opportunity to “nerd out” on this once-in-a-lifetime get-away-from-it-all adventure!  Check back over the summer and see what I’ve been up to!

Trevor Headshot

That’s me!

Emily Whalen: Station 381–Cashes Ledge, May 1, 2015

NOAA Teacher at Sea
Emily Whalen
Aboard NOAA Ship Henry B. Bigelow
April 27 – May 10, 2015

Mission: Spring Bottom Trawl Survey, Leg IV
Geographical Area of Cruise: Gulf of Maine

Date: May 1, 2015

Weather Data from the Bridge:
Winds:  Light and variable
Seas: 1-2ft
Air Temperature:   6.2○ C
Water Temperature:  5.8○ C

Science and Technology Log:

Earlier today I had planned to write about all of the safety features on board the Bigelow and explain how safe they make me feel while I am on board.  However, that was before our first sampling station turned out to be a monster haul!  For most stations I have done so far, it takes about an hour from the time that the net comes back on board to the time that we are cleaning up the wetlab.  At station 381, it took us one minute shy of three hours! So explaining the EEBD and the EPIRB will have to wait so that I can describe the awesome sampling we did at station 381, Cashes Ledge.

This is a screen that shows the boats track around the Gulf of Maine.  The colored lines represent the sea floor as determined by the Olex multibeam.  This information will be stored year after year until we have a complete picture of the sea floor in this area!

This is a screen that shows the boats track around the Gulf of Maine. The colored lines represent the sea floor as determined by the Olex multibeam. This information will be stored year after year until we have a complete picture of the sea floor in this area!

Before I get to describing the actual catch, I want to give you an idea of all of the work that has to be done in the acoustics lab and on the bridge long before the net even gets into the water.

The bridge is the highest enclosed deck on the boat, and it is where the officers work to navigate the ship.  To this end, it is full of nautical charts, screens that give information about the ship’s location and speed, the engine, generators, other ships, radios for communication, weather data and other technical equipment.  After arriving at the latitude and longitude of each sampling station, the officer’s attention turns to the screen that displays information from the Olex Realtime Bathymetry Program, which collects data using a ME70 multibeam sonar device attached to bottom of the hull of the ship .

Traditionally, one of the biggest challenges in trawling has been getting the net caught on the bottom of the ocean.  This is often called getting ‘hung’ and it can happen when the net snags on a big rock, sunken debris, or anything else resting on the sea floor.  The consequences can range from losing a few minutes time working the net free, to tearing or even losing the net. The Olex data is extremely useful because it can essentially paint a picture of the sea floor to ensure that the net doesn’t encounter any obstacles.  Upon arrival at a site, the boat will cruise looking for a clear path that is about a mile long and 300 yards wide.  Only after finding a suitable spot will the net go into the water.

Check out this view of the seafloor.  On the upper half of the screen, there is a dark blue channel that goes between two brightly colored ridges.  That's where we dragged the net and caught all of the fish!

Check out this view of the seafloor. On the upper half of the screen, there is a dark blue channel that goes between two brightly colored ridges. We trawled right between the ridges and caught a lot of really big fish!

The ME70 Multibeam uses sound waves to determine the depth of the ocean at specific points.  It is similar to a simpler, single stream sonar in that it shoots a wave of sound down to the seafloor, waits for it to bounce back up to the ship and then calculates the distance the wave traveled based on the time and the speed of sound through the water, which depends on temperature.  The advantage to using the multibeam is that it shoots out 200 beams of sound at once instead of just one.  This means that with each ‘ping’, or burst of sound energy, we know the depth at many points under the ship instead of just one.  Considering that the multibeam pings at a rate of 2 Hertz to 0.5 Herts, which is once every 0.5 seconds to 2 seconds, that’s a lot of information about the sea floor contour!

This is what the nautical chart for Cashes Ledge looks like. The numbers represent depth in fathoms.  The light blue lines are contour lines.  The places where they are close together represent steep cliffs.  The red line represents the Bigelow’s track. You can see where we trawled as a short jag between the L and the E in the word Ledge

The stations that we sample are randomly selected by a computer program that was written by one of the scientists in the Northeast Fisheries Science Center, who happens to be on board this trip.  Just by chance, station number 381 was on Cashes Ledge, which is an underwater geographical feature that includes jagged cliffs and underwater mountains.  The area has been fished very little because all of the bottom features present many hazards for trawl nets.  In fact, it is currently a protected area, which means the commercial fishing isn’t allowed there.  As a research vessel, we have permission to sample there because we are working to collect data that will provide useful information for stock assessments.

My watch came on duty at noon, at which time the Bigelow was scouting out the bottom and looking for a spot to sample within 1 nautical mile of the latitude and longitude of station 381.  Shortly before 1pm, the CTD dropped and then the net went in the water.  By 1:30, the net was coming back on board the ship, and there was a buzz going around about how big the catch was predicted to be.  As it turns out, the catch was huge!  Once on board, the net empties into the checker, which is usually plenty big enough to hold everything.  This time though, it was overflowing with big, beautiful cod, pollock and haddock.  You can see that one of the deck crew is using a shovel to fill the orange baskets with fish so that they can be taken into the lab and sorted!

You can see the crew working to handling all of the fish we caught at Cashes Ledge.  How many different kinds of fish can you see?

You can see the crew working to handling all of the fish we caught at Cashes Ledge. How many different kinds of fish can you see? Photo by fellow volunteer Joe Warren


At this point, I was standing at the conveyor belt, grabbing slippery fish as quickly as I could and sorting them into baskets.  Big haddock, little haddock, big cod, little cod, pollock, pollock, pollock.  As fast as I could sort, the fish kept coming!  Every basket in the lab was full and everyone was working at top speed to process fish so that we could empty the baskets and fill them up with more fish!  One of the things that was interesting to notice was the variation within each species.  When you see pictures of fish, or just a few fish at a time, they don’t look that different.  But looking at so many all at once, I really saw how some have brighter colors, or fatter bodies or bigger spots.  But only for a moment, because the fish just kept coming and coming and coming!

Finally, the fish were sorted and I headed to my station, where TK, the cutter that I have been working with, had already started processing some of the huge pollock that we had caught.  I helped him maneuver them up onto the lengthing board so that he could measure them and take samples, and we fell into a fish-measuring groove that lasted for two hours.  Grab a fish, take the length, print a label and put it on an envelope, slip the otolith into the envelope, examine the stomach contents, repeat.

Cod, pollock and haddock in baskets

Cod, pollock and haddock in baskets waiting to get counted and measured. Photo by Watch Chief Adam Poquette.

Some of you have asked about the fish that we have seen and so here is a list of the species that we saw at just this one site:

  • Pollock
  • Haddock
  • Atlantic wolffish
  • Cod
  • Goosefish
  • Herring
  • Mackerel
  • Alewife
  • Acadian redfish
  • Alligator fish
  • White hake
  • Red hake
  • American plaice
  • Little skate
  • American lobster
  • Sea raven
  • Thorny skate
  • Red deepsea crab





I think it’s human nature to try to draw conclusions about what we see and do.  If all we knew about the state of our fish populations was based on the data from this one catch, then we might conclude that there are tons of healthy fish stocks in the sea.  However, I know that this is just one small data point in a literal sea of data points and it cannot be considered independently of the others.  Just because this is data that I was able to see, touch and smell doesn’t give it any more validity than other data that I can only see as a point on a map or numbers on a screen.  Eventually, every measurement and sample will be compiled into reports, and it’s that big picture over a long period of time that will really allow give us a better understanding of the state of affairs in the ocean.

Sunset from the deck of the Henry B. Bigelow

Sunset from the deck of the Henry B. Bigelow

Personal Log

Lunges are a bit more challenging on the rocking deck of a ship!

Lunges are a bit more challenging on the rocking deck of a ship!

It seems like time is passing faster and faster on board the Bigelow.  I have been getting up each morning and doing a Hero’s Journey workout up on the flying bridge.  One of my shipmates let me borrow a book that is about all of the people who have died trying to climb Mount Washington.  Today I did laundry, and to quote Olaf, putting on my warm and clean sweatshirt fresh out of the dryer was like a warm hug!  I am getting to know the crew and learning how they all ended up here, working on a NOAA ship.  It’s tough to believe but a week from today, I will be wrapping up and getting ready to go back to school!

Gregory Cook, On Sea Sickness and Good People, August 10, 2014

NOAA Teacher at Sea

Gregory Cook

Aboard NOAA Ship Oscar Dyson

July 26 – August 13, 2014

Mission: Annual Walleye Pollock Survey

Geographical Area: Bering Sea

Date: August 10, 2014

Science and Technology Log:

Last night and afternoon was by far the craziest we’ve seen on the Oscar Dyson. The winds were up to 35 knots (about 40 miles an hour). The waves were averaging 12 feet in height, and sometimes reaching 15-18 feet in height. Right now I’m sitting on the bridge and waves are around 8 feet. With every rise the horizon disappears and I’m looking up at stark grey clouds. With every drop the window fills with views of the sea, with the horizon appearing just below the top of the window frames.


In the space of three seconds, the view from atop the bridge of the Oscar Dyson goes from looking up to the sky to down at the sea. The above pic is a MILD example.

Ensign Gilman, a member of NOAA Corps, explains to me how the same thing that makes the Bering Sea good for fish makes things rough for fishermen.

“This part of the Bering Sea is shallow compared to the open ocean. That makes the water easier for the wind to pick up and create waves. When strong winds come off Russia and Alaska, it kicks up a lot of wave action,” Ensign Gilman says.

Andrew, Bill and Nate

Lt. Andrew Ostapenko, Survey Tech Bill Potts, and Ens. Nathaniel Gilman on the Bridge

“It’s not so much about the swells (wave height),” he continues. “It’s about the steepness of the wave, and how much time you have to recover from the last wave.” He starts counting between the waves… “one… two… three… three seconds between wave heights… that’s a pretty high frequency. With no time to recover, the ship can get rocked around pretty rough.”

Rough is right! Last night I got shook around like the last jelly bean in the jar. I seriously considered finding some rope to tie myself into my bunk. There were moments when it seemed an angry giraffe was jumping on my bunk. I may or may not have shouted angrily at Sir Isaac Newton that night.

Which brings us to Sea Sickness.

Lt. Paul Hoffman, a Physician’s Assistant with the U.S. Public Health Service, explains how sea sickness works.

“The inner ears are made up of tubes that allow us to sense motion in three ways,” Hoffman explains. “Forward/back, left/right, and up/down. While that’s the main way our brain tells us where we are, we use other senses as well.” He goes on to explain that every point of contact… feet and hands, especially, tell the brain more information about where we are in the world.

“But another, very important piece, are your eyes. Your eyes are a way to confirm where you are in the world. Sea Sickness tends to happen when your ears are experiencing motion that your eyes can’t confirm,” Hoffman says.

For example, when you’re getting bounced around in your cabin (room), but nothing around you APPEARS to be moving (walls, chair, desk, etc) your brain, essentially, freaks out. It’s not connected to anything rational. It’s not enough to say “Duhh, brain, I’m on a boat. Of course this happens.” It happens in a part of the brain that’s not controlled by conscious thought. You can’t, as far as I can tell, think your way out of it.

Hoffman goes on to explain a very simple solution: Go look at the sea.

“When you get out on deck, the motion of the boat doesn’t stop, but your eyes can look at the horizon… they can confirm what your ears have been trying to tell you… that you really are going up and down. And while it won’t stop the boat from bouncing you around, your stomach will probably feel a lot better,” Hoffman says.

The Deck is your Friend.

Everything is easier on deck! Clockwise from left: Winch Operator Pete Stoeckle and myself near Cape Navarin, Russia. Oceanographer Nate Lauffenburger and myself crossing the International Date Line. Survey Tech Alyssa Pourmonir and Chief Scientist Taina Honkalehto near Cape Navarin, Russia.

And he’s right. Being up on the bridge… watching the Oscar Dyson plow into those stout waves… my brain has settled into things. The world is back to normal. Well, as normal as things can get on a ship more than a third of the way around the world, that is.

Personal Log:

Let’s meet a few of the good folks on the Oscar Dyson. 

NOAA Crew Member Alyssa Pourmonir

Job Title: Survey Technician

Alyssa and the Giant Jelly!

Survey Tech Alyssa Pourmonir assesses a giant jelly fish!

Responsibilities on the Dyson: “I’m a liaison between crew and scientists, work with scientists in the wet lab, put sensors onto the trawling nets, focus on safety, maintaining all scientific data and equipment on board.” A liaison is someone who connects two people or groups of people.

Education Level Required: “A Bachelors degree in the sciences.” Alyssa has a BS in Marine and Environmental Science from SUNY Maritime with minors in oceanography and meteorology.

Job or career you’ve had before this: “I was a life guard/swim instructor in high school, then I was in the Coast Guard for three years. Life guarding is the BEST job in high school!”

Goal: “I strive to bring about positive change in the world through science.”

Weirdest thing you ever took out of the Sea: “Lump Sucker: They have big flappy eyebrows… they kinda look like a bowling ball.”

Lump Sucker!

Lump Sucker! When provoked, this fish sucks in so much water that it becomes too big for most other fish to swallow. That’s its defense mechanism! It sort of looks like a cross between a bowling ball and grumpy cat!

Dirtiest job you’ve ever had to do on a ship: “Sexing the fish (by cutting them open and looking at the fish’s gonads… sometimes they explode!) is pretty gross, but cleaning the PCO2 filter is nasty.  There are these marine organisms that get in there and cling to the filter and you have to push them off with your hands… they get all slimy!”

Engineer Rico Speights

Engineer Rico Speights shows off how nasty a filter can be! He and his wife (Chief Steward Ava) sail the Bering Sea together with NOAA!

NOAA Rotating Technician Ricardo Guevara

Job Title: Electronics Technician

Responsibilities on the Dyson: “I maintain and upkeep most of the low voltage electronics on the ship, like computer networking, radio, television systems, sensors, navigation systems. All the equipment that can “talk,” that can communicate with other devices, I take care of that.”

Education level Required: High school diploma and experience. “I have a high school diploma and some college. The majority of my knowledge comes from experience… 23 years in the military.”

Tech Guevara

Technician Ricardo Guevara shows me an ultrasonic anemometer… It can tell the wind speed by the time it takes the wind to get from one fork to the other.

Job or career you’ve had before this: “I was a telecommunications specialist with the United States Air Force… I managed encryption systems and associated keymat for secure communications.” This means he worked with secret codes.

Trickiest problem you’ve solved for NOAA: “There was a science station way out on the outer edge of the Hawaiian Islands that was running their internet off of dial-up via satellite phone when the whole thing shut down on them… ‘Blue Screen of Death’ style. We couldn’t just swap out the computer because of all the sensitive information on it. I figured out how to repair the disk without tearing the machine apart. Folks were extremely happy with the result… it was very important to the scientists’ work.”

What are you working on now? “I’m migrating most of the ship’s computers from windows xp to Windows 7. I’m also troubleshooting the DirecTV system. The problem with DirecTV is that the Multi-Switch for the receivers isn’t communicating directly with the satellite. Our antenna sees the satellite, but the satellite cannot ‘shake hands’ with our receiver system.” And that means no Red Sox games on TV! Having entertainment available for the crew is important when you’re out to sea for two to three weeks at a time!

What’s a challenging part of your job on the Dyson? “I don’t like it, but I do it when I have to… sometimes in this job you have to work pretty high up. Sometimes I have to climb the ship’s mast for antenna and wind sensor maintenance. It’s windy up there… and eagles aren’t afraid of you up there. That’s their place!”

Lt. Paul Hoffman

Job Title: Physician Assistant (or P.A.) with the U.S. Public Health Service

Paul and Peggy

Lt. Paul Huffman and the small boat Peggy D behind him. Lt. Huffman is with the U.S. Public Health Service. But secretly I call him the Bat Man of Health Care. Peggy Dyson is a beloved part of the Alaska Fishing Industry’s history. Before the internet and satellite telephones, her radio service served as a vital link home for fishermen out at sea.  She was married to Oscar Dyson, the man for whom the ship was named.

Responsibilities on the Dyson: He’s effectively the ship’s doctor. “Whenever a NOAA ship travels outside 200 miles of the U.S. coast, they need to be able to provide an increased level of medical care. That’s what I do,” says Hoffman.

Education required for this career: “Usually a Masters degree from a Physician’s Assistant school with certification.”

Job or career you’ve had before this: “Ten and a half years in the U.S. Army, I started off as an EMT. Then I went on to LPN (Licensed Practical Nurse) school, and then blessed with a chance to go on to PA school. I served in Iraq in 2007-2008, then returned for 2010-2011.”

Most satisfying thing you’ve seen or done in your career: “Knowing that you personally had an impact on somebody’s life… keeping somebody alive. We stabilized one of our soldiers and then had a helicopter evac (evacuation) under adverse situations. Situations like that are what make being a PA worthwhile.”

Could you explain what the Public Health Service is for folks that might not be familiar with it?

“The Public Health Service is one of the seven branches of the U.S. Military. It’s a non-weaponized, non-combative, all-officer corps that falls under the Department of Health and Human Services. We’re entirely medical related. Primary deployments (when they get sent into action) are related to national emergency situations… hurricanes, earth quakes… anywhere where state and local resources are overrun… they can request additional resources… that’s where we step in. Hurricane Katrina, the Earthquake in Haiti… a lot of officers saw deployment there. Personally, I’ve been employed in Indian Health Services in California and NOAA’s Aircraft Operations Center (AOC)… they’re the hurricane hunters,” Hoffman concludes.

Kids, when you’ve been around Lt. Hoffman for a while, you realize “adverse conditions” to him are a little tougher than a traffic jam or missing a homework assignment. I’ve decided to call him, and the rest of the Public Health Service, “The Batman of Health Care.” When somebody lights up the Bat Signal, they’re there to help people feel better.

Coming up next: International Teamwork!