Trevor Hance, Permission to Come Aboard? May 28, 2015

NOAA Teacher at Sea
Trevor Hance
Soon to be Aboard R/V Hugh R. Sharp
12 June – 24 June, 2015

Mission: Sea Scallop Survey
Geographical area: New England/Georges Bank
Date: May 28, 2015

Personal Log: Permission to Come Aboard?

Greetings from Austin, Texas.  In less than two weeks, my grand summer adventure begins.  I will be flying out of Austin, and heading to Boston where Peter Pan will magically transport me down the Woods (Rabbit?) Hole and out to sea aboard the R/V Hugh R. Sharp, where I will support scientists conducting a Sea Scallop Survey.

sharp_deck_copy

Photo from the NOAA Fisheries website that I’ve been using to determine how to dress!

My Real Job

I teach at a fantastic public school in Austin that incorporates student interest surveys in lesson design and enrichment opportunities across subjects.  Although we are within the city of Austin, our campus backs up to a wildlife preserve (30,000 acres, total) that was set aside as land use patterns changed, and threatened habitat and ecosystems of 2 endangered birds, 8 invertebrates and 27 other species deemed “at risk.”  We have about 5 “wildspace” acres on our actual campus property that is unfenced to the larger Balcones Canyonlands Preserve.  We use that space as our own laboratory, and over the last decade, fifth grade students at our school have designed, constructed and continue to support the ecosystem through ponds supported by rainwater collection (yes, they are quite full at the moment!), a butterfly habitat, water-harvesting shelter/outdoor classroom, grassland/wildflower prairie and a series of trails.  In the spring, I post job descriptions for projects that need work in our Preserve and students formally apply for a job (i.e. – resume/cover letter).  They spend the balance of the spring working outdoors, conducting research relating to their job, and doing their part to develop a culture and heritage of sustainability on our campus that transcends time as students move beyond our campus during their educational journey.  My path through the curriculum is rooted in constructivist learning theory (project-based, place-based and service learning) and students are always outdoors.  Parents, of course, always get a huge “thank you” at the end of the year from me for not complaining that I’ve ruined too many pairs of shoes.

Below are a few pictures from our game cameras and shots I’ve taken of my classes in action this spring.

Capture2

Texas bluebonnets are beautiful, and even more spectacular when you get close and see “the neighborhood.”

DSCN7879

Rain or shine

DSCN8205

Early morning observation in the Preserve

DSCN8303

Gambusia — my favorite!

DSCN8341

Western ribbon snake snacking at the tadpole buffet.

DSCN9907

One of our frog surveys in action

IMG_0092

So, did anyone figure out what does the fox say?

IMG_0106

Wild pigs rooting

IMG_0995

Bandits abound when the sun goes down.

 

2015 05 13 GCW top of observation area

The endangered golden cheeked warbler, taken by me early May

As I write, there are about 5 days left of this school year, which means that most of our big projects are complete and the rain has paused, so we’re spending a few days having a big “mechanical energy ball” competition (aka – “kickball”), and I get the distinct feeling that the students are quite prepared for their summer break!

My Background

I was an “oilfield kid” and grew up in Lafayette, Louisiana, the heart of Cajun Country, and about an hour’s drive to the Gulf of Mexico.  In college, I worked in the oilfield a bit, and after finishing law school, I was a maritime attorney, so I was able to spend some time aboard vessels for various purposes.  My time aboard the Hugh R. Sharp will be my longest stint aboard a vessel, and I’m quite excited for the work!

My Mission

R/V Hugh R. Sharp (btw students, it is a vessel or ship, not a “boat”) is a 146-foot general purpose research vessel owned by the University of Delaware (go Fighting Blue Hens!).  Each summer I get a travel coffee mug from the college where I attend a professional development course, and I’m hopeful I can find one with a picture of YoUDee on it this year!

GofMmap_750_272953

Photo from the Woods Hole Center for Oceans and Human Health

 

LARGEIMAGE_920423

Photo from the University of Delaware bookstore website of the mug I might pick up while traveling this summer

 

rvSharp-AcousticTrials

R/V Hugh R. Sharp

 

While aboard the vessel, we will be conducting surveys to determine the distribution and abundance of scallops.  My cruise is the third (and northernmost) leg of the surveys, and we’ll spend our time dredge surveying, doing an image based survey using a tethered tow-behind observation vehicle, and some deeper water imaging of lobster habitat.  Those of you who know me, know that I am genuinely and completely excited and grateful for the opportunity to “nerd out” on this once-in-a-lifetime get-away-from-it-all adventure!  Check back over the summer and see what I’ve been up to!

Trevor Headshot

That’s me!

Emily Whalen: Station 381–Cashes Ledge, May 1, 2015

NOAA Teacher at Sea
Emily Whalen
Aboard NOAA Ship Henry B. Bigelow
April 27 – May 10, 2015

Mission: Spring Bottom Trawl Survey, Leg IV
Geographical Area of Cruise: Gulf of Maine

Date: May 1, 2015

Weather Data from the Bridge:
Winds:  Light and variable
Seas: 1-2ft
Air Temperature:   6.2○ C
Water Temperature:  5.8○ C

Science and Technology Log:

Earlier today I had planned to write about all of the safety features on board the Bigelow and explain how safe they make me feel while I am on board.  However, that was before our first sampling station turned out to be a monster haul!  For most stations I have done so far, it takes about an hour from the time that the net comes back on board to the time that we are cleaning up the wetlab.  At station 381, it took us one minute shy of three hours! So explaining the EEBD and the EPIRB will have to wait so that I can describe the awesome sampling we did at station 381, Cashes Ledge.

This is a screen that shows the boats track around the Gulf of Maine.  The colored lines represent the sea floor as determined by the Olex multibeam.  This information will be stored year after year until we have a complete picture of the sea floor in this area!

This is a screen that shows the boats track around the Gulf of Maine. The colored lines represent the sea floor as determined by the Olex multibeam. This information will be stored year after year until we have a complete picture of the sea floor in this area!

Before I get to describing the actual catch, I want to give you an idea of all of the work that has to be done in the acoustics lab and on the bridge long before the net even gets into the water.

The bridge is the highest enclosed deck on the boat, and it is where the officers work to navigate the ship.  To this end, it is full of nautical charts, screens that give information about the ship’s location and speed, the engine, generators, other ships, radios for communication, weather data and other technical equipment.  After arriving at the latitude and longitude of each sampling station, the officer’s attention turns to the screen that displays information from the Olex Realtime Bathymetry Program, which collects data using a ME70 multibeam sonar device attached to bottom of the hull of the ship .

Traditionally, one of the biggest challenges in trawling has been getting the net caught on the bottom of the ocean.  This is often called getting ‘hung’ and it can happen when the net snags on a big rock, sunken debris, or anything else resting on the sea floor.  The consequences can range from losing a few minutes time working the net free, to tearing or even losing the net. The Olex data is extremely useful because it can essentially paint a picture of the sea floor to ensure that the net doesn’t encounter any obstacles.  Upon arrival at a site, the boat will cruise looking for a clear path that is about a mile long and 300 yards wide.  Only after finding a suitable spot will the net go into the water.

Check out this view of the seafloor.  On the upper half of the screen, there is a dark blue channel that goes between two brightly colored ridges.  That's where we dragged the net and caught all of the fish!

Check out this view of the seafloor. On the upper half of the screen, there is a dark blue channel that goes between two brightly colored ridges. We trawled right between the ridges and caught a lot of really big fish!

The ME70 Multibeam uses sound waves to determine the depth of the ocean at specific points.  It is similar to a simpler, single stream sonar in that it shoots a wave of sound down to the seafloor, waits for it to bounce back up to the ship and then calculates the distance the wave traveled based on the time and the speed of sound through the water, which depends on temperature.  The advantage to using the multibeam is that it shoots out 200 beams of sound at once instead of just one.  This means that with each ‘ping’, or burst of sound energy, we know the depth at many points under the ship instead of just one.  Considering that the multibeam pings at a rate of 2 Hertz to 0.5 Herts, which is once every 0.5 seconds to 2 seconds, that’s a lot of information about the sea floor contour!

This is what the nautical chart for Cashes Ledge looks like. The numbers represent depth in fathoms.  The light blue lines are contour lines.  The places where they are close together represent steep cliffs.  The red line represents the Bigelow’s track. You can see where we trawled as a short jag between the L and the E in the word Ledge

The stations that we sample are randomly selected by a computer program that was written by one of the scientists in the Northeast Fisheries Science Center, who happens to be on board this trip.  Just by chance, station number 381 was on Cashes Ledge, which is an underwater geographical feature that includes jagged cliffs and underwater mountains.  The area has been fished very little because all of the bottom features present many hazards for trawl nets.  In fact, it is currently a protected area, which means the commercial fishing isn’t allowed there.  As a research vessel, we have permission to sample there because we are working to collect data that will provide useful information for stock assessments.

My watch came on duty at noon, at which time the Bigelow was scouting out the bottom and looking for a spot to sample within 1 nautical mile of the latitude and longitude of station 381.  Shortly before 1pm, the CTD dropped and then the net went in the water.  By 1:30, the net was coming back on board the ship, and there was a buzz going around about how big the catch was predicted to be.  As it turns out, the catch was huge!  Once on board, the net empties into the checker, which is usually plenty big enough to hold everything.  This time though, it was overflowing with big, beautiful cod, pollock and haddock.  You can see that one of the deck crew is using a shovel to fill the orange baskets with fish so that they can be taken into the lab and sorted!

You can see the crew working to handling all of the fish we caught at Cashes Ledge.  How many different kinds of fish can you see?

You can see the crew working to handling all of the fish we caught at Cashes Ledge. How many different kinds of fish can you see? Photo by fellow volunteer Joe Warren

 

At this point, I was standing at the conveyor belt, grabbing slippery fish as quickly as I could and sorting them into baskets.  Big haddock, little haddock, big cod, little cod, pollock, pollock, pollock.  As fast as I could sort, the fish kept coming!  Every basket in the lab was full and everyone was working at top speed to process fish so that we could empty the baskets and fill them up with more fish!  One of the things that was interesting to notice was the variation within each species.  When you see pictures of fish, or just a few fish at a time, they don’t look that different.  But looking at so many all at once, I really saw how some have brighter colors, or fatter bodies or bigger spots.  But only for a moment, because the fish just kept coming and coming and coming!

Finally, the fish were sorted and I headed to my station, where TK, the cutter that I have been working with, had already started processing some of the huge pollock that we had caught.  I helped him maneuver them up onto the lengthing board so that he could measure them and take samples, and we fell into a fish-measuring groove that lasted for two hours.  Grab a fish, take the length, print a label and put it on an envelope, slip the otolith into the envelope, examine the stomach contents, repeat.

Cod, pollock and haddock in baskets

Cod, pollock and haddock in baskets waiting to get counted and measured. Photo by Watch Chief Adam Poquette.

Some of you have asked about the fish that we have seen and so here is a list of the species that we saw at just this one site:

  • Pollock
  • Haddock
  • Atlantic wolffish
  • Cod
  • Goosefish
  • Herring
  • Mackerel
  • Alewife
  • Acadian redfish
  • Alligator fish
  • White hake
  • Red hake
  • American plaice
  • Little skate
  • American lobster
  • Sea raven
  • Thorny skate
  • Red deepsea crab

 

 

 

 

I think it’s human nature to try to draw conclusions about what we see and do.  If all we knew about the state of our fish populations was based on the data from this one catch, then we might conclude that there are tons of healthy fish stocks in the sea.  However, I know that this is just one small data point in a literal sea of data points and it cannot be considered independently of the others.  Just because this is data that I was able to see, touch and smell doesn’t give it any more validity than other data that I can only see as a point on a map or numbers on a screen.  Eventually, every measurement and sample will be compiled into reports, and it’s that big picture over a long period of time that will really allow give us a better understanding of the state of affairs in the ocean.

Sunset from the deck of the Henry B. Bigelow

Sunset from the deck of the Henry B. Bigelow

Personal Log

Lunges are a bit more challenging on the rocking deck of a ship!

Lunges are a bit more challenging on the rocking deck of a ship!

It seems like time is passing faster and faster on board the Bigelow.  I have been getting up each morning and doing a Hero’s Journey workout up on the flying bridge.  One of my shipmates let me borrow a book that is about all of the people who have died trying to climb Mount Washington.  Today I did laundry, and to quote Olaf, putting on my warm and clean sweatshirt fresh out of the dryer was like a warm hug!  I am getting to know the crew and learning how they all ended up here, working on a NOAA ship.  It’s tough to believe but a week from today, I will be wrapping up and getting ready to go back to school!

Gregory Cook, On Sea Sickness and Good People, August 10, 2014

NOAA Teacher at Sea

Gregory Cook

Aboard NOAA Ship Oscar Dyson

July 26 – August 13, 2014

Mission: Annual Walleye Pollock Survey

Geographical Area: Bering Sea

Date: August 10, 2014


Science and Technology Log:

Last night and afternoon was by far the craziest we’ve seen on the Oscar Dyson. The winds were up to 35 knots (about 40 miles an hour). The waves were averaging 12 feet in height, and sometimes reaching 15-18 feet in height. Right now I’m sitting on the bridge and waves are around 8 feet. With every rise the horizon disappears and I’m looking up at stark grey clouds. With every drop the window fills with views of the sea, with the horizon appearing just below the top of the window frames.

UpDownUpDownUpDown

In the space of three seconds, the view from atop the bridge of the Oscar Dyson goes from looking up to the sky to down at the sea. The above pic is a MILD example.

Ensign Gilman, a member of NOAA Corps, explains to me how the same thing that makes the Bering Sea good for fish makes things rough for fishermen.

“This part of the Bering Sea is shallow compared to the open ocean. That makes the water easier for the wind to pick up and create waves. When strong winds come off Russia and Alaska, it kicks up a lot of wave action,” Ensign Gilman says.

Andrew, Bill and Nate

Lt. Andrew Ostapenko, Survey Tech Bill Potts, and Ens. Nathaniel Gilman on the Bridge

“It’s not so much about the swells (wave height),” he continues. “It’s about the steepness of the wave, and how much time you have to recover from the last wave.” He starts counting between the waves… “one… two… three… three seconds between wave heights… that’s a pretty high frequency. With no time to recover, the ship can get rocked around pretty rough.”

Rough is right! Last night I got shook around like the last jelly bean in the jar. I seriously considered finding some rope to tie myself into my bunk. There were moments when it seemed an angry giraffe was jumping on my bunk. I may or may not have shouted angrily at Sir Isaac Newton that night.

Which brings us to Sea Sickness.

Lt. Paul Hoffman, a Physician’s Assistant with the U.S. Public Health Service, explains how sea sickness works.

“The inner ears are made up of tubes that allow us to sense motion in three ways,” Hoffman explains. “Forward/back, left/right, and up/down. While that’s the main way our brain tells us where we are, we use other senses as well.” He goes on to explain that every point of contact… feet and hands, especially, tell the brain more information about where we are in the world.

“But another, very important piece, are your eyes. Your eyes are a way to confirm where you are in the world. Sea Sickness tends to happen when your ears are experiencing motion that your eyes can’t confirm,” Hoffman says.

For example, when you’re getting bounced around in your cabin (room), but nothing around you APPEARS to be moving (walls, chair, desk, etc) your brain, essentially, freaks out. It’s not connected to anything rational. It’s not enough to say “Duhh, brain, I’m on a boat. Of course this happens.” It happens in a part of the brain that’s not controlled by conscious thought. You can’t, as far as I can tell, think your way out of it.

Hoffman goes on to explain a very simple solution: Go look at the sea.

“When you get out on deck, the motion of the boat doesn’t stop, but your eyes can look at the horizon… they can confirm what your ears have been trying to tell you… that you really are going up and down. And while it won’t stop the boat from bouncing you around, your stomach will probably feel a lot better,” Hoffman says.

The Deck is your Friend.

Everything is easier on deck! Clockwise from left: Winch Operator Pete Stoeckle and myself near Cape Navarin, Russia. Oceanographer Nate Lauffenburger and myself crossing the International Date Line. Survey Tech Alyssa Pourmonir and Chief Scientist Taina Honkalehto near Cape Navarin, Russia.

And he’s right. Being up on the bridge… watching the Oscar Dyson plow into those stout waves… my brain has settled into things. The world is back to normal. Well, as normal as things can get on a ship more than a third of the way around the world, that is.

Personal Log:

Let’s meet a few of the good folks on the Oscar Dyson. 

NOAA Crew Member Alyssa Pourmonir

Job Title: Survey Technician

Alyssa and the Giant Jelly!

Survey Tech Alyssa Pourmonir assesses a giant jelly fish!

Responsibilities on the Dyson: “I’m a liaison between crew and scientists, work with scientists in the wet lab, put sensors onto the trawling nets, focus on safety, maintaining all scientific data and equipment on board.” A liaison is someone who connects two people or groups of people.

Education Level Required: “A Bachelors degree in the sciences.” Alyssa has a BS in Marine and Environmental Science from SUNY Maritime with minors in oceanography and meteorology.

Job or career you’ve had before this: “I was a life guard/swim instructor in high school, then I was in the Coast Guard for three years. Life guarding is the BEST job in high school!”

Goal: “I strive to bring about positive change in the world through science.”

Weirdest thing you ever took out of the Sea: “Lump Sucker: They have big flappy eyebrows… they kinda look like a bowling ball.”

Lump Sucker!

Lump Sucker! When provoked, this fish sucks in so much water that it becomes too big for most other fish to swallow. That’s its defense mechanism! It sort of looks like a cross between a bowling ball and grumpy cat!

Dirtiest job you’ve ever had to do on a ship: “Sexing the fish (by cutting them open and looking at the fish’s gonads… sometimes they explode!) is pretty gross, but cleaning the PCO2 filter is nasty.  There are these marine organisms that get in there and cling to the filter and you have to push them off with your hands… they get all slimy!”

Engineer Rico Speights

Engineer Rico Speights shows off how nasty a filter can be! He and his wife (Chief Steward Ava) sail the Bering Sea together with NOAA!

NOAA Rotating Technician Ricardo Guevara

Job Title: Electronics Technician

Responsibilities on the Dyson: “I maintain and upkeep most of the low voltage electronics on the ship, like computer networking, radio, television systems, sensors, navigation systems. All the equipment that can “talk,” that can communicate with other devices, I take care of that.”

Education level Required: High school diploma and experience. “I have a high school diploma and some college. The majority of my knowledge comes from experience… 23 years in the military.”

Tech Guevara

Technician Ricardo Guevara shows me an ultrasonic anemometer… It can tell the wind speed by the time it takes the wind to get from one fork to the other.

Job or career you’ve had before this: “I was a telecommunications specialist with the United States Air Force… I managed encryption systems and associated keymat for secure communications.” This means he worked with secret codes.

Trickiest problem you’ve solved for NOAA: “There was a science station way out on the outer edge of the Hawaiian Islands that was running their internet off of dial-up via satellite phone when the whole thing shut down on them… ‘Blue Screen of Death’ style. We couldn’t just swap out the computer because of all the sensitive information on it. I figured out how to repair the disk without tearing the machine apart. Folks were extremely happy with the result… it was very important to the scientists’ work.”

What are you working on now? “I’m migrating most of the ship’s computers from windows xp to Windows 7. I’m also troubleshooting the DirecTV system. The problem with DirecTV is that the Multi-Switch for the receivers isn’t communicating directly with the satellite. Our antenna sees the satellite, but the satellite cannot ‘shake hands’ with our receiver system.” And that means no Red Sox games on TV! Having entertainment available for the crew is important when you’re out to sea for two to three weeks at a time!

What’s a challenging part of your job on the Dyson? “I don’t like it, but I do it when I have to… sometimes in this job you have to work pretty high up. Sometimes I have to climb the ship’s mast for antenna and wind sensor maintenance. It’s windy up there… and eagles aren’t afraid of you up there. That’s their place!”

Lt. Paul Hoffman

Job Title: Physician Assistant (or P.A.) with the U.S. Public Health Service

Paul and Peggy

Lt. Paul Huffman and the small boat Peggy D behind him. Lt. Huffman is with the U.S. Public Health Service. But secretly I call him the Bat Man of Health Care. Peggy Dyson is a beloved part of the Alaska Fishing Industry’s history. Before the internet and satellite telephones, her radio service served as a vital link home for fishermen out at sea.  She was married to Oscar Dyson, the man for whom the ship was named.

Responsibilities on the Dyson: He’s effectively the ship’s doctor. “Whenever a NOAA ship travels outside 200 miles of the U.S. coast, they need to be able to provide an increased level of medical care. That’s what I do,” says Hoffman.

Education required for this career: “Usually a Masters degree from a Physician’s Assistant school with certification.”

Job or career you’ve had before this: “Ten and a half years in the U.S. Army, I started off as an EMT. Then I went on to LPN (Licensed Practical Nurse) school, and then blessed with a chance to go on to PA school. I served in Iraq in 2007-2008, then returned for 2010-2011.”

Most satisfying thing you’ve seen or done in your career: “Knowing that you personally had an impact on somebody’s life… keeping somebody alive. We stabilized one of our soldiers and then had a helicopter evac (evacuation) under adverse situations. Situations like that are what make being a PA worthwhile.”

Could you explain what the Public Health Service is for folks that might not be familiar with it?

“The Public Health Service is one of the seven branches of the U.S. Military. It’s a non-weaponized, non-combative, all-officer corps that falls under the Department of Health and Human Services. We’re entirely medical related. Primary deployments (when they get sent into action) are related to national emergency situations… hurricanes, earth quakes… anywhere where state and local resources are overrun… they can request additional resources… that’s where we step in. Hurricane Katrina, the Earthquake in Haiti… a lot of officers saw deployment there. Personally, I’ve been employed in Indian Health Services in California and NOAA’s Aircraft Operations Center (AOC)… they’re the hurricane hunters,” Hoffman concludes.

Kids, when you’ve been around Lt. Hoffman for a while, you realize “adverse conditions” to him are a little tougher than a traffic jam or missing a homework assignment. I’ve decided to call him, and the rest of the Public Health Service, “The Batman of Health Care.” When somebody lights up the Bat Signal, they’re there to help people feel better.

Coming up next: International Teamwork!

 

Gregory Cook, Super Fish, August 2, 2014

NOAA Teacher at Sea

Gregory Cook

Aboard NOAA Ship Oscar Dyson

July 26 – August 13, 2014

Mission: Annual Walleye Pollock Survey

Geographical Area: Bering Sea

Date: August 2, 2014

Science and Technology Log 

See this guy here? He’s an Alaskan Pollock.

If fish thought sunglasses were cool, this fish would wear sunglasses.

Alaskan Pollock, aka Walleye Pollock.
Credit: http://www.noaanews.noaa.gov

“Whatever,” you shrug.
“Just a fish,” you scorn.
“He’s slimy and has fish for brains,” you mock.
Well, what if I told you that guy there was worth almost one billion dollars in exports alone?
What if I told you that thousands of fishermen rely on this guy to provide for their families?
What if I told you that they were the heart of the Sub-Arctic food web, and that dozens of species would be threatened if they were to disappear?
What if I told you they were all secretly trained ninja fish? Ninja fish that carry ninja swords strapped to their dorsal fins?
Then I’d only be wrong about one thing.


Taina Honkalehto is the Chief Scientist onboard the Oscar Dyson. She has been studying Pollock for the last 22 years. I asked her what was so important about the fish.

“They’re the largest single species fishery in North America,” Taina says. That makes them top dog…err… fish… in the U.S. fishing industry.

Chief Scientist Taina Honkalehto decides where to fish based on data.

Chief Scientist Taina Honkalehto decides where to fish based on data.

“In the U.S. they are fish sticks and fish-wiches (like Filet-o-Fish from McDonalds). They’ve become, foodwise, what Cod used to be… inexpensive, whitefish protein,” Taina continues. They’re also the center of the sub-arctic food web. Seals, walruses, orca, sea lions, and lots of larger fish species rely on Pollock as an energy source.”
But they aren’t just important for America. Pollock plays an important role in the lives of people from all over the Pacific Rim. (Remember that the Pacific Rim is made up of all the countries that surround the Pacific Ocean… from the U.S. and Canada to Japan to Australia to Chile!)

Pollock Need Love, too!

Pollock Need Love, too!

“Pollock provide a lot of important fish products to many countries, including the U.S., Japan, China, Korea, and Russia,” Honkalehto says.

Making sure we protect Pollock is REALLY important. To know what can go wrong, we only have to look at the Atlantic Cod, the fish that Cape Cod was named after. In the last twenty years, the number of Atlantic Cod has shrunk dramatically. It’s cost a lot of fishermen their jobs and created stress in a number of families throughout New England as well as tensions between the U.S. and Canada. The U.S. and Canada share fish populations.

The primary job of the Oscar Dyson is to sample the Pollock population. Government officials use the results to tell fishermen what their quota should be. A quota is a limit on the number of fish you can catch. The way we gather that data, though, can be a little gross.

The Aleutian Wing Trawl (or AWT)

Fishermen Deploy the AWT

Fishermen Deploy the AWT.

The fishermen guide the massive Aleutian Wing Trawl (or AWT) onto the deck of the ship. The AWT is a 150 meters long net (over one and a half football fields in length) that is shaped like an ice cream cone. The net gets more and more narrow until you get all the way down to the pointy tip. This is known as the “cod end,” and it’s where most of the fish end up. Here’s a diagram that XO (Executive Officer) Kris Mackie was kind enough to find for me.

AWT

The Aleutian Wing Trawl (or AWT). over one and a half football fields worth of Pollock-Snatching Power.

The AWT is then hooked onto a crane which empties it on a giant mechanical table. The table has a hydraulic lift that lets us dump fish into the wet lab.

Allen pulls a cod from the Table

Survey Technician Allen pulls a cod from the Table

Kids, whenever you hear the term “wet lab,” I don’t want you to think of a water park. Wet lab is going to mean guts. Guts and fish parts.

In the wet lab, the contents of the net spills onto a conveyer belt… sort of like what you see at Shaw’s or Market Basket. First we sift through the Pollock and pull any odd things… jellyfish, skates, etc… and set them aside for measurement. Then it’s time to find out what sex the Pollock are.

Survey Technician Alyssa and Oceanographer Nate pull a giant jellyfish out of a pile of pollock!

Survey Technician Alyssa and Oceanographer Nate pull a giant jellyfish out of a pile of pollock!

Genitals on the Inside!

Pollock go through external fertilization (EF). That means that the female lays eggs, and the males come along and fertilize them with their sperm. Because of that, there’s no need for the outside part of the sex organs to look any different. In science, we often say that form follows function. In EF, there’s very little function needed other than a hole for the sperm or egg cells to leave the body.

Because of that, the only way to tell if a Pollock is male or female is to cut them open and look for ovaries and testes. This is a four step process.

Ladies before Gentlemen: The female Pollock (in the front) has ovaries that look like two orange lobes. The Male (in the back) has structures that make him look like he ate Ramen noodles for dinner.

Ladies before Gentlemen:
The female Pollock (bottom) has ovaries that look like two orange lobes. The Male (itop) has testes that make him look like he ate Ramen noodles for dinner.

Step 1: Slice open the belly of the fish.

Step 2: Push the pink, flippy floppy liver aside.

Step 3: Look for a pair of lobes (a bag like organ) that is either purple, pink, or orange-ish. These are the ovaries! If you find this, you’ve got a female.

Step 4: If you strike out on step 3, look for a thin black line that runs behind the stomach. These are the testes… As Tom Hanks and Meg Ryan might say, you’ve got male.

Then the gender and length of the fish is then recorded using CLAMS… a software program that NOAA computer scientists developed for just this purpose. With NOAA, like any good science program, it’s all about attention to detail. These folks take their data very seriously, because they know that so many people depend on them to keep the fish population safe.

Personal Blog

Safety!

Lobster Gumby

Your teacher in an Immersion Suit. Sailors can survive for long periods of time in harsh environments in these outfits.

.

On the first day aboard the Oscar Dyson, we were trained on all matters of safety. Safety on a ship is often driven by sirens sounded by the bridge. Here’s a list of calls, what they mean, and what you should do when you hear them:

What you hear… What it means… What you should do…
 Three long blasts of the alarm: Man Over Board Report to safety station, be counted, and report in to the bridge (unless you’re the one that saw the person go overboard… then you throw them life rings (floaties) and keep pointing at them).
 One long blast of general alarm or ship’s whistle: Fire or Emergency onboard Report to safety station, be counted, and report in to the bridge. Bring Immersion Suit just in case.
 Six or more short blasts then one long blast of the alarm: Abandon Ship Grab your immersion suit, head to the aft (back) deck of the ship, be counted, and prepare to board a life raft.

 

The immersion suit (the thing that makes me look like lobster gumby, above) is made of thick red neoprene. It has two flashing lights also known as beacons…  one of them automatically turns on when it hits water! This helps rescuers find you in case you’re lost in the dark. It also has an inflatable pillow behind your head to help keep your head above water. Mostly just wanted to wear it to Starbucks some day.

Food!

Another thing I can tell you about life aboard the Oscar Dyson is that there is plenty to eat!

kind of awesome. For one thing, there is a never ending supply of food in the galley (the ship’s cafeteria). Eva is the Chief Steward on the Oscar Dyson (though I call her the Head Chef!).

Chief Steward Eva gets dinner done right!

Chief Steward Eva gets dinner done right!

You’ll never go hungry on her ship. Dinner last night? barbeque ribs and mac and cheese. Yesterday’s lunch? Steak and chicken fajitas. And this morning? Breakfast burritos with ham and fruit. I know. You were worried that if I lost any weight at sea that I might just disappear. I can confirm for you that this is absolutely not going to happen.

Tune in next time when I take you on a tech tour of the Oscar Dyson!

 

Andi Webb: Living and Learning on the Oregon II, July 13, 2014

NOAA Teacher at Sea
Andi Webb
Aboard NOAA Ship Oregon II
July 11 – 19, 2014

Mission: SEAMAP Summer Groundfish Survey
Geographical Area of Cruise: Gulf of Mexico
Date: July 13, 2014

Weather Data:
29 Degrees Celsius
75% Humidity
Windspeed: 1.82 Knots
Lat/Long: 2941.97N, 08414.16W
Science and Technology Log

There is truly so much to learn on the Oregon II. It’s almost like a small city with all the jobs everyone has, food preparation on board, safety drills, and a community of people working together to make everything successful. I am working the noon to midnight shift and am partnered with kind, intelligent team members that are helping me learn what it takes to work for NOAA. Our team consists of Michael, Mark, and Brittany. Each has so much knowledge of marine animals that I certainly feel like I have much to learn. It’s pretty amazing how they know the scientific names of most animals and plants we come across while trawling from the Oregon II.

I'm dressed in a survival suit looking a bit like an orange Gumby.  These survival suits would protect us from hypothermia if we needed to abandon ship. In order to wear these, you must lay the suit flat on the floor and crawl into it. It took Ensign Laura Dwyer, a Junior Officer, and me working together to get it on. I really was tempted to Sumo wrestle with it on!

I’m dressed in a survival suit looking a bit like an orange Gumby. These survival suits would protect us from hypothermia if we needed to abandon ship. In order to wear these, you must lay the suit flat on the floor and crawl into it. It took Ensign Laura Dwyer, a Junior Officer, and me working together to get it on. I really was tempted to Sumo wrestle with it on!

When it was time to “haul back” the net that was trawling for fish, everyone rushed to get to work. The trawl caught a wide variety of fish, shells, and plants. In the wet lab, all the scientists quickly began sorting the fish into baskets and began identifying them. The data must be entered into the computer with the name of the fish, quantity, weight, etc. On the rare occasion they may not be able to identify the plant or animal immediately, they refer to descriptive books such as Fishes of the Gulf of Mexico.

This is a trawl used to catch fish (and other surprises).

This is a trawl used to catch fish (and other surprises).

The fish on the left are Diplectrum formosum (Sand perch) and on the right are Haemulon aurolineatum (Tomtate).

The fish on the left are Diplectrum formosum and on the right are Haemulon aurolineatum.

Scientist Spotlight: Meet Brittany Palm-She really knows her “stuff” and she is so helpful in explaining everything to me so I can understand. Brittany is a Fisheries Biologist and will soon begin to work on her PhD. Brittany explained the CTD device to me. It measures conductivity, temperature, and depth. It soaks at the surface for 3 minutes to calibrate and flush out sensors. The CTD is then sent from the surface of the water to the bottom and then back up to the surface. It records environmental data for the scientists.

Brittany is a Fisheries Biologist on the Oregon II.

Brittany is a Fisheries Biologist on the Oregon II.

This is me standing by the Conductivity, Temperature, and Depth Measuring Device.

This is me standing by the Conductivity, Temperature, and Depth Measuring Device.

During a trawl today, we had quite a surprise! Check it out below:

Look who showed up on deck of the Oregon II. It's a Loggerhead turtle. Pretty amazing!

Look who showed up on deck of the Oregon II. It’s a Loggerhead turtle. Pretty amazing! After checking out his stats, we returned him to sea.

All in all, it’s been a great day learning lots with some pretty cool people!

Crystal Davis, Bottom Trawl for Shrimp, June 27, 2014

Bringing in a trawl

Bringing in a trawl

NOAA Teacher at Sea

Crystal Davis

Aboard NOAA Ship Oregon II

June 23 – July 7, 2014

Mission: SEAMAP Groundfish Survey

Geographical area of cruise: Gulf of Mexico

Date: Friday June 27, 2014

Weather: Partly cloudy

Winds:  15-20 knots

Waves:  5-6 feet

 

 

Science and Technology Log: Bottom Trawling

The Oregon II is a participant and contributor to SEAMAP (The Southeast Area Monitoring and Assessment Program) which monitors the biodiversity of marine life in the Gulf of Mexico. The primary way the Oregon II assists SEAMAP is by conducting bottom trawls with a 42 foot semi-balloon shrimp trawl net.The net is slowly lowered into the ocean until it reaches the bottom and is then dragged along the ocean floor for thirty minutes. The net has a tickler chain between the doors which scrapes the bottom of the ocean floor and flicks objects into the net. The net is then brought to the surface and all of the organisms inside are put into baskets (see video above). The total weight of the catch is massed on scales on the deck. If the catch is large (over 20 kilos), it is dumped onto a conveyor belt and a random sub-sample (smaller) is kept, along with any unique species while the rest of the catch is dumped overboard.

Shrimp Net

Shrimp Net

Once the sample has been selected, the marine organisms are sorted by species and put into baskets. Each species is then massed and counted while the data is recorded into a system called FSCS (Fisheries Scientific Computer System). To obtain a random sampling, every fifth individual of the species (up to twenty) is measured, massed and sexed (more on this later). Once the data has been verified by the watch manager, the marine organisms are put back into the ocean. The following are pictures of a sample on the conveyor belt and the organisms divided into a few species.

The sorting process for shrimp (white, brown and pink) differs slightly from that of the other marine organisms. Every shrimp (up to 200 of each species), is massed, measured and sexed.This data is then used by various government agencies such as the Fish and Wildlife Service, Gulf of Mexico and South Atlantic Fishery Management Councils, etc… to determine the length of the shrimping season and to set quotas on the amount that can be caught by each issued license. States will not open the shrimping season until SEAMAP reports back with their findings from NOAA’s shrimp survey.

Types of shrimp in the Gulf of Mexico

Types of shrimp in the Gulf of Mexico

The shrimp trawl net used on the Oregon II differs from a shrimp net used on a commercial boat in two main ways. Commercial shrimping boats have BRD’s (Bycatch Reduction Devices) and TED’s (Turtle Excluder Devices). BRD’s and TED’s are federally required in the U.S. to reduce the amount of bycatch (unintentionally caught organisms) and sea turtles. Shrimping boats typically trawl for hours and turtles cannot survive that long without air. TED’s provide turtles and other large marine organisms an escape hatch so that they do not drown (see the video below). Unfortunately, larger turtles such as Loggerheads are too big to fit through the bars in a TED. Additionally, TED’s may become ineffective if they are clogged with sea debris, kelp or are purposefully altered.

     

Boat Personnel of the Week:

Warren Brown:

Warren Brown

Warren Brown

Warren is a gear specialist who is working as a member of the scientific party. He is contracted by Riverside for NOAA.  While aboard the Oregon II, Warren designs, builds and repairs gear that is needed on the boat. Unfortunately, on this leg of the trip either sharks or dolphins have been chewing holes in the nets to eat the fish inside. This means Warren has spent a large chunk of his time repairing nets.

Warren is not a crew member of the Oregon II  and actually works at the Netshed in Pascagoula where he spends his time working with TED’s. He has law enforcement training and will go out with government agencies (such as the Coast Guard or Fish and Wildlife Service) to monitor TED’s on shrimping boats. He also participates in outreach programs educating fishermen in measuring their nets for TED’s, installing them. Warren will bring TED’s and nets to make sure that every everyone at the training has a hands on experience installing them. While he regularly does outreach in Alabama, Mississippi, Florida, Georgia, North Carolina and Texas, his work has also taken him as far as Brazil.

Robin Gropp:

Robin playing his mandolin

Robin playing his mandolin

Robin will be a junior at Lewis & Clark College in the Fall. He is currently an intern aboard the Oregon II. Robin received a diversity internship through the Northern Gulf Institute and is one of eight interns for NOAA. For the first two weeks Robin worked at the NOAA lab participating in outreach at elementary school science fairs. He brought sea turtle shells and a shrimp net with a TED installed. The students were very excited to pretend to be sea turtle and run through the TED. They proclaimed, “we love sea turtles.”  After leaving the Oregon II, Robin will return to the NOAA lab to study the DNA of sharks.

 

Personal Log:

Overall I have had a hard time processing and accepting the groundfish survey portion of the trip. I am a vegetarian that does not eat meat, including fish, for ethical and environmental reasons. Yet here I find myself on a boat in the Gulf of Mexico surveying groundfish so that others can eat shrimp. A large part of me feels that I should be protesting the survey rather than assisting. Because of this I spent a lot of time talking to the other scientists on my watch and Chief Scientist Andre Debose. After many discussions (some still ongoing) I do realize how important the groundfish survey is. Without it, there would be no limits placed on the fishing industry and it is likely that many populations of marine organisms would be hunted to extinction more rapidly than they are now. This survey actually gives the shrimp species a chance at survival.

Did You Know?

Countries that do not use TED’s are banned from selling their shrimp to the U.S.

John Bilotta, Super Highways of Currents and Super Specimens from the Deep: Days 5 & 6 in the South Atlantic MPAs, June 23, 2014

NOAA Teacher at Sea

John Bilotta

Aboard NOAA ship Nancy Foster

June 17 – 27, 2014

 

Mission: South Atlantic Marine Protected Area Survey

Geographical area of cruise: South Atlantic

Date: June 23, 2014

Weather:

Saturday: Sunny, some clouds,  27 degrees Celsius.  6.0 knot wind from the southwest.  1-2m seas.

Sunday:  Cloudy with morning rain clearing to mostly sunny in the afternoon.  27 degrees Celsius. 13 knot wind from the west. 2-4m seas.

 ** Note: Upon request, note that if you click on any picture it should open full screen so you can the detail much better!

Science and Technology Log

Science Part I.  The superhighway under the surface: sea currents

Until today, most everything including the weather and sea conditions were in our favor.  On the surface it just looks like waves (ok well big waves) but underneath is a superhighway.  On Sunday morning the currents throughout the water column were very strong.  The result was the ROV and its power and fiber optic umbilical cord never reached a true vertical axis.  Even with a 300lbs down-weight and five thrusters the ROV could not get to our desired depth of about 60m.  The current grabbed its hold onto the thin cable and stretched it diagonally far under the ship – a dangerous situation with the propellers.  The skill of ROV pilots Lance and Jason and the crew on the bridge navigated the challenging situation and we eventually retrieved the ROV back to the deck.  I presume if I were back home on Goose Lake in Minnesota, I certainly would have ended up with the anchor rope wrapped around the props in a similar situation.  So, where is the current coming from and how do we measure it aboard the Nancy Foster?

The Gulf Stream.  Note the direction of the current and consider that on Sunday morning we were due east of North Carolina.

The Gulf Stream. Note the direction of the current and consider that on Sunday morning we were due east of North Carolina.

Answer: The Gulf Stream is an intense, warm ocean current in the western North Atlantic Ocean and it moves up the coast from Florida to North Carolina where it then heads east.  You don’t have to be directly in the Gulf Stream to be affected by its force; eddies spin off of it and at times, water will return in the opposite direction on either side of it.  Visit NOAA Education for more on ocean currents.

Answer: Aboard the Nancy Foster, we have a Teledyne ADCP – Acoustic Doppler Current Profiler.  The ADCP measures direction, speed, and depths of the currents between the ship and the ocean floor.  It’s not just one measurement of each; currents may be moving in different directions, at different depths, at different speeds.  This can make a ROV dive challenging.

For example, at 4pm on Sunday near the Snowy Grouper MPA site off the coast of North Carolina, from 0-70 meters in depth the current was coming from the north and at about 2 knots. At 70 meters to the sea floor bottom it was coming from the south at over 2 knots.  Almost completely opposite.

Hydrphone

Hydrophone

Another indication of the strong currents today was the force against the hydrophone. Hydrophones detect acoustic signals in the ocean.  We are using a hydrophone mounted on the side of the Nancy Foster to communicate the location of the ROV to the ship.  The hydrophone has to be lowered and secured to the ship before each dive.  It ended up in my blog today because the current was so strong, three of us could not swing and pull the hydrophone to a vertical position in the water column.  It was a good indicator the currents were much stronger than the past few days.

 

Science Part II.  Discoveries of Dives in the Deep

Snowy Grouper – one primary species we are on the hunt for this mission

Snowy Grouper are one of the species requiring management due to low and threatened stock levels within the federal 200-mile limit of the Atlantic off the coasts of North Carolina, South Carolina, Georgia and east Florida to Key West.  The MPAs help conserve and manage these species.  We were excited to have a few visit the camera lens the past two days.

Pair of Snowy Groupers photographed during one of our dives on Friday, June 20.  Photo credit: NOAA UNCW. Mohawk ROV June 2014.

Pair of Snowy Groupers photographed during one of our dives on Friday, June 20. Sizes are approximately 30-50cm (12-20″).Photo credit: NOAA/UNCW. Mohawk ROV June 2014.

Snowy Grouper photographed during one of our dives on Friday, June 20.   Size is approximately 40-50cm (16-20").  Photo credit: NOAA UNCW. Mohawk ROV June 2014.

Snowy Grouper photographed during one of our dives on Friday, June 20. Size is approximately 40-50cm (16-20″). Photo credit: NOAA/UNCW. Mohawk ROV June 2014.

Snowy Grouper and a Roughtongue Bass photographed during one of our dives on Friday, June 20.   Photo credit: NOAA UNCW. Mohawk ROV June 2014.

Snowy Grouper and a Roughtongue Bass photographed during one of our dives on Friday, June 20. Photo credit: NOAA/UNCW. Mohawk ROV June 2014.

 

Scorpianfish (scorpaenidea)

Scorpianfish (scorpaenidea) photographed during one of dives on Saturday, June 21.  Photo credit: NOAA UNCW. Mohawk ROV June 2014.

Scorpionfish (Scorpaenidea) photographed during one of dives on Saturday, June 21. Photo credit: NOAA/UNCW. Mohawk ROV June 2014.

Eel

Eel photographed during one of our dives on Saturday, June 21.  Saw many of these peeking out of their homes in crevices.  We  were lucky to capture this one in its entirety. Photo credit: NOAA UNCW. Mohawk ROV June 2014.

Eel photographed during one of our dives on Saturday, June 21. Saw many of these peeking out of their homes in crevices. We were lucky to capture this one in its entirety. Photo credit: NOAA/UNCW. Mohawk ROV June 2014.

Invertebrates – (with much thanks to my education from Stephanie Farrington)

Stichopathes, Diodogordia, & Ircinia Campana.  Photo credit: NOAA UNCW. Mohawk ROV June 2014.

Stichopathes, Diodogordia, & Ircinia Campana. Photo credit: NOAA/UNCW. Mohawk ROV June 2014.

Leiodermatium, Nicella, feather duster crinoids, and a Red Porgy in the far background.  Photo credit: NOAA UNCW. Mohawk ROV June 2014.

Leiodermatium, Nicella, feather duster crinoids, and a Red Porgy in the far background. Photo credit: NOAA/UNCW. Mohawk ROV June 2014.

Science Part III.  Rugosity- 

Rugosity is sea- bottom roughness.  Probably one of the terms and skills I will remember most about this experience.  In oceanography, rugosity is determined in addition to the other characteristics I am more accustomed to:  slope, composition, and the cover type (plants, animals, invertebrates.)  It was a little challenging for me to incorporate this into my observations the first few days so thought I would share two of the stark differences.   This compliments my strong knowledge and passion for teaching earth science with Earth AdventureI cannot wait to use this content in future Earth Balloon & Earth Walk Programs!

Rugosity Comparison. Low rogosity on the left; high rogosity on the right.  The low has a flat plain where as the high has rocks, deep crevasses, slopes, and texture.  Snowy Grouper desire high rogosity.  Photo credit: NOAA UNCW. Mohawk ROV June 2014.

Rugosity Comparison. Low rugosity on the left; high rugosity on the right. The low has a flat plain where as the high has rocks, deep crevasses, slopes, and texture. Snowy Grouper desire high rugosity. Photo credit: NOAA/UNCW. Mohawk ROV June 2014.

Science Part III.  Day Shapes

When a ship has restricted ability to move, the ship displays vertically (up to down) from the mast a black ball, diamond, and black ball.  This informs other ships and vessels in the area not to approach the Nancy Foster as we can’t move; the ROV is in the water.  While radio communication is an option, this is a marine standard that signals others to stay away.  If we were deploying the ROV at night, a series of lights communicate the same message.  On Sunday morning, we observed three recreational fishing boats probably a 1.5 kilometers from the ship.  It seemed one was moving towards us likely interested in what was happening aboard the giant Nancy Foster.

Day shapes displayed on the Nancy Foster ship mast;  black ball, diamond, and black ball.  The NF has restricted ability to move; the ROV is in the water.

Day shapes displayed on the Nancy Foster ship mast; black ball, diamond, and black ball. The NF has restricted ability to move; the ROV is in the water.

 

Career highlight:  

Lance Horn and Jason White are the two ROV pilots on board from the University of North Carolina Wilmington.

ROV pilots Lance Horn and Jason White.  On the left, Lance surveys the ocean 'shall we launch the ROV or not?' - or perhaps we is just thinking deep thoughts.  On right, Lance and Jason preparing the cable prior to dive.

ROV pilots Lance Horn and Jason White. On the left, Lance surveys the ocean ‘shall we launch the ROV or not?’ – or perhaps he is just thinking deep thoughts. On right, Lance and Jason preparing the cable prior to dive.

OLYMPUS DIGITAL CAMERA

John & Jason White at the ROV pilot control center.

Personal Log:

A week without television.  While I brought movies on my iPad and there is a lounge equipped with more than nine leather recliners, a widescreen, and amazing surround sound, I haven’t yet sat down long enough to watch anything.  I spend 12 hours a day being a shadow to the researches trying to absorb as much as I can and lending a hand in anything that can help the mission. Most of my evenings have been consumed by researching species we saw during the dives using taxonomy keys and well, just asking a lot of questions.  I go through hundreds of digital pictures from the ROV and try to make sense of the many pages of notes I make as the researchers discuss species, habitats, and characteristics during the dives. While I am using a trust book version as well as the multiple poster versions scattered on the walls in the lab, here is a great online key.

Sunday evening, crew members of the Nancy Foster invited me to join them in a game of Mexican Train – a game using Dominos.  Thanks Tim for including me!  I am going to have to purchase this for cabin weekends up north in Minnesota (when the mosquitoes get so large they will carry you away and we can no longer go out in the evenings).

When the Acoustic Doppler Current Profiler wasn’t working, we just called on King Neptune and his kite to help us gauge the wind speed, direction and the currents.  Wait, I thought he carried a scepter?

King Neptune collage

Tim Olsen, Chief Engineer – 11 years on the Nancy Foster and 30 years as Chief Engineer.

Espresso!  I really was worried about the coffee when coming aboard the Nancy Foster for 12+ days.  What would I do without my Caribou Coffee or Starbucks?  Chief Steward Lito and Second Cook Bob to the rescue with an espresso machine in the mess.  John has been very happy – and very awake.

I made it a little more progress reading The Big Thirst by Charles Fishman.

In 2009, we spent $21 billion on bottled water, more on Poland Spring, FIJI Water, Evian, Aquafina, and Dasani than we spent buying iPhones, iPods, and all the  music and apps we load on them.”  (p337)

Glossary to Enhance Your Mind

Each of my logs is going to have a list of new vocabulary to enhance your knowledge.  I am not going to post the definitions; that might be a future student assignment.

NOAA’s Coral Reef Watch has a great site of definitions at

http://coralreefwatch.noaa.gov/satellite/education/workshop/docs/workbook_definitions.pdf

  • Hydrophone
  • ADCP
  • Rugosity
  • Nautical knot